Sequence to Sequence Classification with Deep Learning CNN+LSTM

6 次查看(过去 30 天)
I was looking through the possible implementation of sequence classification using deep-learning.
There are pllenty of example of LSTM/BILSTM implementations
and 1D-Convolutional implementations of the problem.
My question is there is a way to combine the two solutions?
If for the first one the building of the net seems pretty immediate by stacking series of custom layers:
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(numHiddenUnits,'OutputMode','sequence')
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
The convolution implementation seems indeed more complex, as it directly defines the various computational blocks.
Can i use a pre-defined convolution2Dlayer in the layers structure like in A) or do i have to go deeply in coding as described in B)?

采纳的回答

Srivardhan Gadila
Srivardhan Gadila 2020-3-25
I think you can use the convolution2Dlayer with appropriate input arguments but make sure you use the sequenceFoldingLayer, sequenceUnfoldingLayer wherever necessary. Also refer to List of Deep Learning Layers.
  2 个评论
Mirko Job
Mirko Job 2020-3-25
Thanks for the early response,
It indeed came with good news since i am actually trying to solve the problem using custom loop and dlarrays with not satisfying results. However it is not clear for me the need for sequenceFolding/UnfoldingLayer since i am working on accelerometry data and not images. As a first rude approach, starting from the convolutional block described in:
I would concatenate the convolutional2DLayer just after the sequenceInputLayer. Is there any implicit step that i lost in the workflow?

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by