We can plot the solution at time step (t = 0.3) by updating the plot for the sixth iteration of the solution array.
We can update the plot when the loop reaches this specific time step, so that the “xnew” values are correctly displayed. This involves setting the “YData” of the plot to the solution at this iteration, ensuring “xnew” values are correctly displayed on graph and adding a title to indicate the time step.
Here is the updated MATLAB code with the required changes:
clear;
clc;
%% Problem 2
xstep = 0.1;
tstep = 0.05;
xstep2 = xstep*xstep;
tstep2 = tstep*tstep;
alpha = 2;
alpha2 = alpha*alpha;
lambda2 = alpha2*tstep2/xstep2;
xdomain = [0 1];
tdomain = [0 1];
nx = round((xdomain(2)-xdomain(1))/xstep);
nt = round((tdomain(2)-tdomain(1))/tstep);
xt0 = zeros((nx+1),1); % initial condition
dxdt0 = zeros((nx+1),1); % initial derivative
xold = zeros((nx+1),1); % solution at timestep k
x2old = zeros((nx+1),1); % solution at timestep k-1
xnew = zeros((nx+1),1); % solution at timestep k+1
% initial condition
pi = acos(-1.0);
for i=1:nx+1
xi = (i-1)*xstep;
if(xi>=0 && xi<=1)
xt0(i) = sin(2*pi*xi);
dxdt0(i) = alpha*pi*sin(2*pi*xi);
xold(i) = xt0(i)+dxdt0(i)*tstep;
xold(i) = xold(i) - 4*pi*pi*sin(2*pi*xi)*tstep2*alpha2;
end
end
x2old = xt0;
close all
x = linspace(xdomain(1), xdomain(2), nx+1);
analy = sin(2*pi.*x).*(sin(4*pi.*0.3) + cos(4*pi.*0.3));
h1 = plot(x, analy, 'DisplayName', 'Analytical');
hold on;
h2 = plot(x, xt0, 'linewidth', 2, 'DisplayName', 'Initial');
hold on;
h3 = plot(x, xnew, 'DisplayName', 'Final');
legend('show');
xlabel('x [m]');
ylabel('Displacement [m]');
set(gca, 'FontSize', 16);
tplot = zeros(1, nt);
for k = 1:nt
time = k * tstep;
tplot(k) = time;
for i = 1:nx+1
% Use periodic boundary condition, u(nx+1)=u(1)
if(i == 1)
xnew(i) = 2 * (1 - lambda2) * xold(i) + lambda2 * (xold(i+1) + xold(nx+1)) - x2old(i);
elseif(i == nx+1)
xnew(i) = 2 * (1 - lambda2) * xold(i) + lambda2 * (xold(1) + xold(i-1)) - x2old(i);
else
xnew(i) = 2 * (1 - lambda2) * xold(i) + lambda2 * (xold(i+1) + xold(i-1)) - x2old(i);
end
end
x2old = xold;
xold = xnew;
% Update plot at t = 0.3 (tplot(6))
if k == 6
h3.YData = xnew;
title('Solution at t = 0.3');
break; % Exit the loop after updating the plot for t = 0.3
end
end
Attached is the documentation of functions referenced:
I hope this helps in resolving the issue.