Binomial Logistic regression & the posterior probability
1 次查看(过去 30 天)
显示 更早的评论
Hi everyone! I have a question regarding a logistic regression model and the prediction of the posterior probability. I have the matrix of A, where the column 2 and 3 are the predictors, and the last column 4 is the target variable. I'm trying to apply the logistic regression model to get the coefficients, and then to use it to predict the posterior probability. In my case, using the model I did, I get 7.6060 which is wrong. Can anyone point out on my mistake? P.S. I believe that the model glm is incorrect since the estimates seem to be wrong.
student_ID = {'5003','5190','5090','5670'}';
hours_studied = [4.85 8.62 5.43 9.21]';
hours_slept = [9.63 3.23 8.23 6.34]';
passed = [1 0 1 0]';
T = table(student_ID, hours_studied, hours_slept, passed);
A = table2array(T(:,2:4));
XX = double(A(:,[1,2]));
YY = logical(A(:,3));
%Fit a logistic regression model using the data
glm = GeneralizedLinearModel.fit(XX,YY,'linear','Distribution','binomial','link','logit');
Xpred = [6.5 2];
ppred = glm.predict(Xpred) %the answer is 7.6060
0 个评论
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Linear Regression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!