Find a fixed accuracy using confusion matrix.

1 次查看(过去 30 天)
I used a confusion matrix to find accuracy. I am getting different accuracy in each run. How can get a fixed accuracy? Anybody, please help me.
clc;
clear;
clc;
clear;
data=readtable('data2.xlsx', 'ReadVariableNames', false);
data.Var1 = findgroups(data.Var1); % convert column
data.Var9 = findgroups(data.Var9); % convert column
minpts=3;
epsilon=30;
data = table2array(data);
[idx, corepts] = dbscan(data,epsilon,minpts);
fig1 = figure();
gscatter(data(:,1),data(:,2),idx);
fig2 = figure();
ax = axes();
hold on;
core=data(corepts, :);
core_idx = idx(corepts, :);
gscatter(core(:,1),core(:,2),core_idx);
centers = splitapply(@(x) mean(x, 1), core, core_idx);
gscatter(centers(:,1), centers(:,2), 1:size(centers,1));
dist2 = (data(:,1) - centers(:,1).').^2 + (data(:,2) - centers(:,2).').^2;
[~,id] = mink(dist2,336,1);
clusters = data(id);
maximum_num_clusters = 7;
Z = linkage(clusters, 'average');
id= cluster(Z, 'Maxclust', maximum_num_clusters);
k = 3;
[idx1,V,D] = spectralcluster(Z,k);
I=data(1:335,9);
[m,order] = confusionmat(I,idx1);
figure
cm = confusionchart(m,order);
c = 3;
TP = cm.NormalizedValues(c,c) ; % true class is c and predicted as c
FP = sum(cm.NormalizedValues(:,c))-TP ; % predicted as c, true class is not c
FN = sum(cm.NormalizedValues(c,:))-TP ; % true class is c, not predicted as c
TN = sum(diag(cm.NormalizedValues))-TP; % true class is not c, not predicted as c
A=(TP+TN)/(TP+TN+FP+FN)*100

回答(1 个)

Aditya Patil
Aditya Patil 2020-8-19
You can set the random seed to get predictable results, as follows
rng(1234);

类别

Help CenterFile Exchange 中查找有关 Statistics and Machine Learning Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by