Using Levenberg-Marquardt algorithm in the optimization
15 次查看(过去 30 天)
显示 更早的评论
How can I use the optimization tool preferable to find a given value in an equation. This is the main equation I=i_ph-Is.*(exp(U./(m_1*Ut))-1) and I have a IU curve, but i want to get the value of 'c_01' in the sub equation Is=c_01*T^(3)*exp((-e_g*eV)/(k*T)).
0 个评论
采纳的回答
Robert U
2020-4-23
Hi RAPHAEL OWENS,
there are several solvers and methods available. One of the available functions in Matlab is lsqcurvefit(). Below there is a sketch of how to apply the function on your (supposedly) available data.
% known parameters
T
e_g
eV
k
i_ph
m_1
Ut
% underlying equation
Is = @(c_01) c_01 * T^3 * exp((-e_g*eV)/(k*T));
I = @(c_01,U) i_ph - Is(c0_1) .* (exp(U./(m_1*Ut))-1);
% start value(s) for optimization
c_01_guess = 1;
% choose algorithm, and possibly other options for optimization solver
opt = optimoptions('lsqcurvefit');
opt.Algorithm = 'levenberg-marquardt';
% run optimization
c_01_opt = lsqcurvefit(I,c_01_guess,U_measured,I_measured,[],[],opt);
Kind regards,
Robert
9 个评论
Robert U
2020-5-5
Hi RAPHAEL OWENS,
I am not sure whether I understood your question correctly: Where do I acquire xdata and ydata on real data?
Usually you are measuring the U-I-curve by supplying U and measuring I. In that case the real data are "U" (xdata) and "I" (ydata). The grid does not matter since you are trying to fit the data to a model function. It just needs to be fine enough to cover the overall model function characteristics.
In a nutshell:
- Supply U (xdata)
- Measure I (ydata)
- Give known parameters
- Fit to model funcion.
Kind regards,
Robert
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Get Started with Optimization Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!