GA for Mixed-Integer Nonlinear Programing
12 次查看(过去 30 天)
显示 更早的评论
Dear all,
I am having a problem with solving a MINLP with GA solver. It keeps having the message of "Constraint function must return real value". I have double checked all the constraints and they should be fine. But this message still appeared. May I ask whether Matlab 2018b can show the contraint that has a problem? I would really appreciate your help.
Thank you so much,
Kind Regards,
Hoang Trinh,
8 个评论
Ameer Hamza
2020-4-28
Can you share the code for the optimization problem? Alternatively, you can add a breakpoint inside nonlcon and find out if there is some issue with return values.
Hoang Trinh
2020-4-29
Dear Ameer Hamza,
Yeah, I also think there is something wrong in the nonlcon constraints. But I do not know how to detect it. Here is the code of my nonlcon constraints:
function [c ceq] = nlcon(x)
tol = 1e-3 ;
c(1) = x(32) - 500*x(1)*6.5/(500*6.5 + x(1)) - tol ;
c(2) = x(33) - 50*(0.06*x(2) - 1)*(1 - exp(-1095)) - 520*(10950^0.8)*(1 - 0.008*x(2))*(0.8 + 1.2*exp(-0.005*x(32)))/(10950^0.8 + 0.15*x(32)) - tol ;
c(3) = x(34)^2 - (x(1) - 41 - x(34))*(400*x(24))/x(5) - tol ;
c(4) = 1000*x(44) - x(9)*x(10)*x(11)*x(12) - tol ;
c(5) = x(51) - 0.6*(x(9)^2*x(10)*x(11) + 2000*x(50))/1000 - tol ;
c(6) = x(52) - 1/1000*(600*x(44)*x(45) + 720*x(50)*(2*x(45)-x(9))/x(45)) - tol ;
c(7) = x(53) - 1/1000000*(300*x(44)*x(45)*(x(9)-x(12)*x(45)) + 360*x(50)*(2*x(45)-x(9))^2/x(45)) - tol ;
c(8) = x(54) - 1/1000*(3600*x(44)*x(45)/11 + 120*x(50)*(12*x(45) - 11*x(9))/x(45)) - tol ;
c(9) = x(55) - 1/1000000*(9000*x(44)*x(45)*(x(9) - 6/11*x(12)*x(45))/55 + 660*x(50)*(2*x(45)-x(9))^2/x(45)) - tol ;
c(10) = x(56) - 1/1000000*(800*x(45)*x(50)*(1 - 0.5*x(12)*x(57)) + 960*x(50)*(1 - (x(9)-x(45))/x(45)/x(57))*(0.5*x(12)*x(57)*x(45) - x(9) + x(45))) - tol ;
c(11) = x(57)*(x(57) + 200*x(50)/1000/x(44)/x(45)) - 1200*x(50)*(x(9)-x(45))/1000/x(44)/x(45)^2 - tol ;
c(12) = 1000*x(58) - 7*(7*6.5*(0.03*x(1) + 5.7) + 30*(x(9)/1000)^2*(3.5 - x(1)/1000)) - tol ;
c(13) = x(59) - 0.05*x(9)*x(58) - tol ;
c(14) = -x(32) + 500*x(1)*6.5/(500*6.5 + x(1)) - tol ;
c(15) = -x(33) + 50*(0.06*x(2) - 1)*(1 - exp(-1095)) + 520*(10950^0.8)*(1 - 0.008*x(2))*(0.8 + 1.2*exp(-0.005*x(32)))/(10950^0.8 + 0.15*x(32)) - tol ;
c(16) = -x(34)^2 + (x(1) - 41 - x(34))*(400*x(24))/x(5) - tol ;
c(17) = -1000*x(44) + x(9)*x(10)*x(11)*x(12) - tol ;
c(18) = -x(51) + 0.6*(x(9)^2*x(10)*x(11) + 2000*x(50))/1000 - tol ;
c(19) = -x(52) + 1/1000*(600*x(44)*x(45) + 720*x(50)*(2*x(45) - x(9))/x(45)) - tol ;
c(20) = -x(53) + 1/1000000*(300*x(44)*x(45)*(x(9)-x(12)*x(45)) + 360*x(50)*(2*x(45)-x(9))^2/x(45)) - tol ;
c(21) = -x(54) + 1/1000*(18000/55*x(44)*x(45) + 120*x(50)*(12*x(45) - 11*x(9))/x(45)) - tol ;
c(22) = -x(55) + 1/1000000*(9000/55*x(44)*x(45)*(x(9) - 6/11*x(12)*x(45)) + 660*x(50)*(2*x(45)-x(9))^2/x(45) ) - tol ;
c(23) = -x(56) + 1/1000000*(800*x(45)*x(50)*(1 - 0.5*x(12)*x(57)) + 960*x(50)*(1 - (x(9)-x(45))/x(45)/x(57))*(0.5*x(12)*x(57)*x(45) - x(9) + x(45))) - tol ;
c(24) = -x(57)*(x(57) + 200*x(50)/(1000*x(44)*x(45))) + 1200*x(50)*(x(9)-x(45))/1000/x(44)/x(45)^2 - tol ;
c(25) = -1000*x(58) + 7*(7*6.5*(0.03*x(1) + 5.7) + 30*(x(9)/1000)^2*(3.5-x(1)/1000)) - tol ;
c(26) = -x(59) + 0.05*x(9)*x(58) - tol ;
c(27) = x(22)/(2*x(2)*x(3)*x(4)*(x(1) - 41)) - 0.36 ;
c(28) = -x(22) + 36/125*(x(2))^0.5*x(1)^2/(x(1) - 41) ;
c(29) = x(23)/(2*x(2)*x(3)*x(4)*(x(1) - 41)) - 0.36 ;
c(30) = -1/2500*x(23)*(x(1) - 41)*(1 - x(23)/(4*x(2)*x(3)*(x(1) - 41))) + 1/10*(0.03*x(1) + 5.7)*(6.5/2 * + x(9)/2000)*(7 - 0.7*x(9)/1000)^2/6.5 ;
c(31) = -x(23) + 36/125*(x(2))^0.5*x(1)^2/(x(1) - 41) ;
c(32) = x(23)/(x(1) - 41) - 4/5*x(2)*x(3)*x(4) ;
c(33) = x(24)/(2*x(2)*x(3)*x(4)*(x(1) - 41)) - 0.36 ;
c(34) = -1/2500*x(24)*(x(1) - 41)*(1 - x(24)/(4*x(2)*x(3)*(x(1) - 41))) + 9/64*(0.03*x(1) + 5.7)*(7 - 0.7*x(9)/1000)^2 ;
c(35) = -x(24) + 36/125*(x(2))^0.5*x(1)^2/(x(1) - 41) ;
c(36) = x(24)/(x(1) - 41) - 4/5*x(2)*x(3)*x(4) ;
c(37) = x(25)/(2*x(2)*x(3)*x(4)*(x(1) - 41)) - 0.36 ;
c(38) = -1/2500*x(25)*(x(1) - 41)*(1 - x(25)/(4*x(2)*x(3)*(x(1) - 41))) + 1/20*(0.03*x(1) + 5.7)*(7 - 0.7*x(9)/1000)^2 ;
c(39) = -x(25) + 36/125*(x(2))^0.5*x(1)^2/(x(1) - 41) ;
c(40) = x(25)/(x(1) - 41) - 4/5*x(2)*x(3)*x(4) ;
c(41) = x(26)/(2*x(2)*x(3)*x(4)*(x(1) - 53)) - 0.36 ;
c(42) = -1/2500*x(26)*(x(1) - 53)*(1 - x(26)/(4*x(2)*x(3)*(x(1) - 53))) + 9/128*(0.03*x(1) + 5.7)*(7/2 * + x(9)/2000)*(6.5 - 0.7*x(9)/1000)^2/(7/4 * + x(9)/2000) ;
c(43) = -x(26) + 36/125*(x(2)^0.5)*x(1)^2/(x(1) - 53) ;
c(44) = x(26)/(x(1) - 53) - 4/5*x(2)*x(3)*x(4) ;
c(45) = x(27)/(2*x(2)*x(3)*x(4)*(x(1) - 53)) - 0.36 ;
c(46) = -1/2500*x(27)*(x(1) - 53)*(1 - x(27)/(4*x(2)*x(3)*(x(1) - 53))) + 1/10*(0.03*x(1) + 5.7)*(7/2 * + x(9)/2000)*(6.5 - 0.7*x(9)/1000)^2/7 ;
c(47) = -x(27) + 36/125*(x(2)^0.5)*x(1)^2/(x(1) - 53) ;
c(48) = x(27)/(x(1) - 53) - 4/5*x(2)*x(3)*x(4) ;
c(49) = -1/2500*x(28)*(x(1) - 53)*(1 - x(28)/(4*x(2)*x(3)*(x(1) - 53))) + 9/64*7*(0.03*x(1) + 5.7)*(6.5 - 0.7*x(9)/1000)^2/6.5 ;
c(50) = -x(28) + 36/125*(x(2))^0.5*x(1)^2/(x(1) - 41) ;
c(51) = x(28)/(x(1) - 53) - 4/5*x(2)*x(3)*x(4) ;
c(52) = x(29)/(2*x(2)*x(3)*x(4)*(x(1) - 53)) - 0.36 ;
c(53) = -1/2500*x(29)*(x(1) - 53)*(1 - x(29)/(4*x(2)*x(3)*(x(1) - 53))) + 1/40*7*(0.03*x(1) + 5.7)*(6.5 - 0.7*x(9)/1000)^2/(7-6.5/2) ;
c(54) = -x(29) + 36/125*(x(2)^0.5)*x(1)^2/(x(1) - 53) ;
c(55) = x(29)/(x(1) - 53) - 4/5*x(2)*x(3)*x(4) ;
c(56) = 0.25*(0.03*x(1) + 5.7)*(7 + x(9)/1000)*(6.5 + x(9)/1000) - 119/500000*(x(1) - 47)*(2*x(9) + x(1) - 47)*(x(2))^0.5/(1 + 125*(7 - 0.7*x(9)/1000)^2/8/(7 + x(9)/1000)/(x(1) - 47)) ;
c(57) = 0.25*(0.03*x(1) + 5.7)*(7 + x(9)/1000)*(6.5 + x(9)/1000) - 119/500000*(x(1) - 47)*(2*x(9) + x(1) - 47)*(x(2))^0.5/(1 + 125*(6.5 - 0.7*x(9)/1000)^2/8/(6.5 + x(9)/1000)/(x(1) - 47)) ;
c(58) = 27/400*(6.5 + x(9)/1000)*(7 - 0.7*x(9)/1000)^2 - 50 ;
c(59) = 1/160*(0.03*x(1) + 5.7)*(6.5 + x(9)/1000)*(7 - 0.7*x(9)/1000)^2 - 160 ;
c(60) = 27/400*(6.5 + x(9)/1000)*(7 - 0.7*x(9)/1000)^2 - x(40) ;
c(61) = 1/160*(0.03*x(1) + 5.7)*(6.5 + x(9)/1000)*(7 - 0.7*x(9)/1000)^2 - x(40) ;
c(62) = x(40) - 27/400*(6.5 + x(9)/1000)*(7 - 0.7*x(9)/1000)^2 - 160*(1-x(14)) ;
c(63) = x(40) - 1/160*(0.03*x(1) + 5.7)*(6.5 + x(9)/1000)*(7 - 0.7*x(9)/1000)^2 - 160*(1-x(15)) ;
c(64) = 0.5*7*(0.03*x(1) + 5.7)*(6.5 + x(9)/1000) - 119/500000*(x(1) - 47)*(3*x(9) + 2*x(1) - 94)*(x(2))^0.5/(1 + 250*x(40)*(3*x(9) + 2*x(1) - 94)/7/(0.03*x(1) + 5.7)/(6.5 + x(9)/1000)/(x(9) + x(1) - 47)/(x(1) - 47)) ;
c(65) = 0.5*7*(0.03*x(1) + 5.7)*(6.5 + x(9)/1000) - 119/500000*(x(1) - 47)*(3*x(9) + 2*x(1) - 94)*(x(2))^0.5/(1 + 125/8*(6.5 - 0.7*x(9)/1000)^2*(3*x(9) + 2*x(1) - 94)/(6.5 + x(9)/1000)/(2*x(9) + x(1) - 47)/(x(1) - 47)) ;
c(66) = 27/400*(7 + x(9)/1000)*(6.5 - 0.7*x(9)/1000)^2 - 50 ;
c(67) = 1/160*(0.03*x(1) + 5.7)*(7 + x(9)/1000)*(6.5 - 0.7*x(9)/1000)^2 - 160 ;
c(68) = 27/400*(7 + x(9)/1000)*(6.5 - 0.7*x(9)/1000)^2 - x(41) ;
c(69) = 1/160*(0.03*x(1) + 5.7)*(7 + x(9)/1000)*(6.5 - 0.7*x(9)/1000)^2 - x(41) ;
c(70) = x(41) - 27/400*(7 + x(9)/1000)*(6.5 - 0.7*x(9)/1000)^2 - 160*(1-x(16)) ;
c(71) = x(41) - 1/160*(0.03*x(1) + 5.7)*(7 + x(9)/1000)*(6.5 - 0.7*x(9)/1000)^2 - 160*(1-x(17)) ;
c(72) = 0.5*6.5*(0.03*x(1) + 5.7)*(7 + x(9)/1000) - 119/500000*(x(1) - 47)*(3*x(9) + 2*x(1) - 94)*(x(2))^0.5/(1 + 125/8*(7 - 0.7*x(9)/1000)^2*(3*x(9) + 2*x(1) - 94)/(7 + x(9)/1000)/(2*x(9) + x(1) - 47)/(x(1) - 47)) ;
c(73) = 0.5*6.5*(0.03*x(1) + 5.7)*(7 + x(9)/1000) - 119/500000*(x(1) - 47)*(3*x(9) + 2*x(1) - 94)*(x(2))^0.5/(1 + 250*(3*x(9) + 2*x(1) - 94)*x(41)/6.5/(0.03*x(1) + 5.7)/(7 + x(9)/1000)/(x(9) + x(1) - 47)/(x(1) - 47)) ;
c(74) = 27/200*6.5*(7 - 0.7*x(9)/1000)^2 - 95 ;
c(75) = 1/80*6.5*(0.03*x(1) + 5.7)*(7 - 0.7*x(9)/1000)^2 - 305 ;
c(76) = 27/200*6.5*(7 - 0.7*x(9)/1000)^2 - x(42) ;
c(77) = 1/80*6.5*(0.03*x(1) + 5.7)*(7 - 0.7*x(9)/1000)^2 - x(42) ;
c(78) = x(42) - 27/200*6.5*(7 - 0.7*x(9)/1000)^2 - 305*(1-x(18)) ;
c(79) = x(42) - 1/80*6.5*(0.03*x(1) + 5.7)*(7 - 0.7*x(9)/1000)^2 - 305*(1-x(19)) ;
c(80) = 27/200*7*(6.5 - 0.7*x(9)/1000)^2 - 95 ;
c(81) = 1/80*7*(0.03*x(1) + 5.7)*(6.5 - 0.7*x(9)/1000)^2 - 305 ;
c(82) = 27/200*7*(6.5 - 0.7*x(9)/1000)^2 - x(43) ;
c(83) = 1/80*7*(0.03*x(1) + 5.7)*(6.5 - 0.7*x(9)/1000)^2 - x(43) ;
c(84) = x(43) - 27/200*7*(6.5 - 0.7*x(9)/1000)^2 - 305*(1-x(20)) ;
c(85) = x(43) - 1/80*7*(0.03*x(1) + 5.7)*(6.5 - 0.7*x(9)/1000)^2 - 305*(1-x(21)) ;
c(86) = 7*6.5*(0.03*x(1) + 5.7) - 119/125000*(x(1) - 47)*(x(9) + x(1) - 47)*(x(2))^0.5/(1 + 500*x(42)/7/6.5/(0.03*x(1) + 5.7)/(x(1) - 47)) ;
c(87) = 7*6.5*(0.03*x(1) + 5.7) - 119/125000*(x(1) - 47)*(x(9) + x(1) - 47)*(x(2))^0.5/(1 + 500*x(43)/7/6.5/(0.03*x(1) + 5.7)/(x(1) - 47)) ;
c(88) = -(0.025*x(1) + 3.1)*(7 - 0.7*x(9)/1000)^2 + 1/750*x(1)^2*(x(2)^0.5 - 1/60*x(24)*x(33)/(20*x(1) + x(24) - 820)) ;
c(89) = log((1/6000*6.5*x(34)^3 + 0.1*x(24)*6.5*(x(1) - 41-x(34) )^2/x(5))/(1 - (1 - 4*x(34)^3/x(1)^3 - 2400*x(24)*(x(1) - 41-x(34))^2/x(5)/x(1)^3)*(1/750*x(1)^2*(x(2)^0.5 - (1/60*x(24)*x(33))/(20*x(1) + x(24) - 820))/(0.025*x(1) + 3.1)/(7 - 0.7/1000*x(9))^2)^2)) - 50 ;
c(90) = log(1/24000*6.5*x(1)^3) - 50 ;
c(91) = x(35) - log((1/6000*6.5*x(34)^3 + 0.1*x(24)*6.5*(x(1) - 41-x(34) )^2/x(5))/(1 - (1 - 4*x(34)^3/x(1)^3 -2400*x(24)*(x(1) - 41-x(34))^2/x(5)/x(1)^3)*(1/750*x(1)^2*(x(2)^0.5 - (1/60*x(24)*x(33))/(20*x(1) + x(24) - 820))/(0.025*x(1) + 3.1)/(7 - 0.7/1000*x(9))^2)^2)) ;
c(92) = x(35) - log(1/24000*6.5*x(1)^3) ;
c(93) = -x(35) + log((1/6000*6.5*x(34)^3 + 0.1*x(24)*6.5*(x(1) - 41 - x(34))^2/x(5))/(1 - (1 - 4*x(34)^3/x(1)^3 - 2400*x(24)*(x(1) - 41 - x(34))^2/x(5)/x(1)^3)*(1/750*x(1)^2*(x(2)^0.5 - 1/60*x(24)*x(33)/(20*x(1) + x(24) - 820))/(0.025*x(1) + 3.1)/(7 - 0.7/1000*x(9))^2)^2)) - 50*(1 - x(30)) ;
c(94) = -x(35) + log(1/24000*6.5*x(1)^3) - 50*(1-x(31)) ;
c(95) = -(0.025*x(1) + 3.1)*(7 - 0.7/1000*x(9))^2 + 4/5625*x(1)^2*(x(2)^0.5 - (1/60*x(24)*x(33))/(20*x(1) + x(24) - 820)) ;
c(96) = log((1/6000*6.5*x(34)^3 + 0.1*x(24)*6.5*(x(1) - 41 - x(34))^2/x(5))/(1 - (1 - 4*x(34)^3/x(1)^3 - 2400*x(24)*(x(1) - 41- x(34))^2/x(5)/x(1)^3)*(4/5625*x(1)^2*(x(2)^0.5 - (1/60*x(24)*x(33))/(20*x(1) + x(24) - 820))/(0.025*x(1) + 3.1)/(7 - 0.7/1000*x(9))^2)^2)) - 50 ;
c(97) = x(36) - log((1/6000*6.5*x(34)^3 + 0.1*x(24)*6.5*(x(1) - 41 - x(34))^2/x(5))/(1 - (1 - 4*x(34)^3/x(1)^3 - 2400*x(24)*(x(1) - 41- x(34))^2/x(5)/x(1)^3)*(4/5625*x(1)^2*(x(2)^0.5 - (1/60*x(24)*x(33))/(20*x(1) + x(24) - 820))/(0.025*x(1) + 3.1)/(7 - 0.7/1000*x(9))^2)^2)) ;
c(98) = x(36) - log(1/24000*6.5*x(1)^3) ;
c(99) = -x(36) + log((1/6000*6.5*x(34)^3 + 0.1*x(24)*6.5*(x(1) - 41 - x(34))^2/x(5))/(1 - (1 - 4*x(34)^3/x(1)^3 - 2400*x(24)*(x(1) - 41- x(34))^2/x(5)/x(1)^3)*(4/5625*x(1)^2*(x(2)^0.5 - (1/60*x(24)*x(33))/(20*x(1) + x(24) - 820))/(0.025*x(1) + 3.1)/(7 - 0.7/1000*x(9))^2)^2)) - 50*(1 - x(37)) ;
c(100) = -x(36) + log(1/24000*6.5*x(1)^3) - 50*(1-x(38)) ;
c(101) = log(546875/96*6.5) + log(1 + 2*(0.025*x(1) + 2.2)/(0.025*x(1) + 3.1)) + log(0.025*x(1) + 3.1) + 3*log(7 - 0.7*x(9)/1000) - log(x(5)) - log(exp(x(35)) + exp(x(36))) - log(4) ;
c(102) = log(546875/96*6.5) + log(1 + 2*(0.025*x(1) + 2.2)/(0.025*x(1) + 3.1)) + log(0.025*x(1) + 3.1) + 4*log(7 - 0.7*x(9)/1000) - log(x(5)) - log(exp(x(35)) + exp(x(36))) - log(25) ;
c(103) = 1/80*7*(0.03*x(1) + 5.7)*(6.5 - 0.7*x(9)/1000)^2 - x(59) ;
c(104) = 1/80*6.5*(0.03*x(1) + 5.7)*(7 - 0.7*x(9)/1000)^2 - x(59) ;
c(105) = 1000*x(58) - x(59)*(x(52)-x(51))/x(53) - x(51) ;
c(106) = 1000*x(58) - x(59)*(x(54)-x(52))/(x(55)-x(53)) - (x(55)*x(52)-x(53)*x(54))/(x(55)-x(53)) ;
c(107) = -1000*x(58) - x(59)*x(54)/(x(56)-x(55)) + x(56)*x(54)/(x(56)-x(55)) ;
c(108) = 0.01*x(9)^2 - 4*x(50) ;
c(109) = -0.04*x(9)^2 + 4*x(50) ;
c(110) = 3300000/x(10)/(x(9) - 78) - x(64) ;
c(111) = 7*(3500 - x(1)) - 3300000*(x(63) + 1)/x(10)/(x(9) - 78) ;
c(112) = x(28)/(2*x(2)*x(3)*x(4)*(x(1) - 53)) - 0.36 ;
c(113) = x(22)/(x(1) - 41) - 4/5*x(2)*x(3)*x(4) ;
c(114) = -1/2500*x(22)*(x(1) - 41)*(1 - x(22)/(4*x(2)*x(3)*(x(1) - 41))) + 9/128*(0.03*x(1) + 5.7)*(6.5/2 + x(9)/2000)*(7 - 0.7*x(9)/1000)^2/(6.5/4 + x(9)/2000) ;
ceq = [];
end
Could you please help me to tackle this error?
Really thank you so much,
Walter Roberson
2020-4-29
You have problems if some of your variables such as x(5) or x(44) or x(45) can be 0, or your x(32) can be sufficiently negative, or if your x(2) can be negative, or your x(1) can be 53, or any of several combinations of values could just happen to cause a division by 0.
It would be easier to debug if we had the rest of your code.
Hoang Trinh
2020-4-29
编辑:Walter Roberson
2020-4-29
Thank you a lot for your response. Yes, I will copy all of my code here.
This is my main code:
% Main code for optimization
fun = @myFitness;
nvars = 82;
lb = [ 200 32 0.67 0.67 30100 348.6 0 0 450 32 0.67 0.67 348.6 0 0 0 0 0 0 0 0 366.7 366.7 366.7 366.7 366.7 366.7 366.7 366.7 0 0 100 100 10 5 5 0 0 0 2 2 2 2 2 50 0 0 0 16 200 5 5 5 5 5 5 0 5 5 20 20 20 2 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] ;
ub = [ 1100 65 0.85 0.85 37400 739.2 0 0 1000 65 0.85 0.85 739.2 1 1 1 1 1 1 1 1 1833.33 1833.33 1833.33 1833.33 1833.33 1833.33 1833.33 1833.33 1 1 1100 1200 1100 50 50 1 1 0 400 400 400 400 50 1000 1 1 0 40 1260 10000 10000 1000 10000 1000 1000 1 10000 1000 300 300 300 500 600 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] ;
% Nonlinear constraints
nonlcon = @nlcon;
% Linear constraints
A = zeros([71 82]) ;
A(1,2) = -1;
A(2,3) = -1;
A(3,4) = -1;
A(4,5) = -1;
A(5,6) = -1;
A(8,2) = 1 ;
A(9,3) = 1 ;
A(10,4) = 1 ;
A(11,5) = 1 ;
A(12,6) = 1 ;
A(13,10) = 1 ;
A(14,11) = 1 ;
A(15,12) = 1 ;
A(16,13) = 1 ;
A(17,10) = -1;
A(18,11) = -1;
A(19,12) = -1;
A(20,13) = -1;
A(45,9) = -1;
A(46,9) = 1 ;
A(49,9) = 1 ;
A(50,9) = -1 ;
A(47,1) = 1;
A(48,1) = -1;
A(52,1) = 21/8 ;
A(53,1) = 21/8 ;
A(54,1) = 21/8 ;
A(55,1) = 21/8 ;
A(56,1) = 21/8 ;
A(57,1) = 21/8 ;
A(58,1) = 21/8 ;
A(59,1) = 21/8 ;
A(60,1) = 5 ;
A(61,2) = 1 ;
A(62,1) = -1 ;
A(61,10) = -1 ;
A(62,9) = -7.5;
A(66,9) = -1;
A(68,9) = -0.6;
A(71,9) = 0.6;
A(29,14) = 1 ;
A(30,14) = -1 ;
A(29,15) = 1 ;
A(30,15) = -1 ;
A(31,16) = 1 ;
A(32,16) = -1 ;
A(31,17) = 1 ;
A(32,17) = -1 ;
A(33,18) = 1 ;
A(34,18) = -1 ;
A(33,19) = 1 ;
A(34,19) = -1 ;
A(35,20) = 1 ;
A(36,20) = -1 ;
A(35,21) = 1 ;
A(36,21) = -1 ;
A(52,22) = -1 ;
A(53,23) = -1 ;
A(54,24) = -1 ;
A(55,25) = -1 ;
A(56,26) = -1 ;
A(57,27) = -1 ;
A(58,28) = -1 ;
A(59,29) = -1 ;
A(60,24) = -1 ;
A(37,30) = 1 ;
A(38,30) = -1 ;
A(37,31) = 1 ;
A(38,31) = -1 ;
A(39,37) = 1 ;
A(40,37) = -1 ;
A(39,38) = 1 ;
A(40,38) = -1 ;
A(41,46) = 1 ;
A(42,46) = -1 ;
A(41,47) = 1 ;
A(42,47) = -1 ;
A(45,45) = 1 ;
A(46,45) = -1 ;
A(45,49) = 0.5;
A(46,49) = -0.5 ;
A(63,49) = 1.5 ;
A(65,49) = -1.5 ;
A(66,49) = 2 ;
A(67,49) = -15 ;
A(70,49) = 15 ;
A(64,46) = 20 ;
A(65,47) = 36 ;
A(23,49) = 1 ;
A(24,49) = -1 ;
A(25,50) = 1 ;
A(26,50) = -1 ;
A(1,65) = 32 ;
A(1,66) = 40 ;
A(1,67) = 50 ;
A(1,68) = 65 ;
A(2,65) = 0.85 ;
A(2,66) = 0.85 ;
A(2,67) = 0.85 ;
A(2,68) = 0.805 ;
A(3,65) = 0.826 ;
A(3,66) = 0.77 ;
A(3,67) = 0.7 ;
A(3,68) = 0.67 ;
A(4,65) = 30100 ;
A(4,66) = 32800 ;
A(4,67) = 34800 ;
A(4,68) = 37400 ;
A(5,65) = 348.6 ;
A(5,66) = 405 ;
A(5,67) = 513 ;
A(5,68) = 739.2 ;
A(6,65) = 1 ;
A(6,66) = 1 ;
A(6,67) = 1 ;
A(6,68) = 1 ;
A(7,65) = -1 ;
A(7,66) = -1 ;
A(7,67) = -1 ;
A(7,68) = -1 ;
A(8,65) = -32 ;
A(8,66) = -40 ;
A(8,67) = -50 ;
A(8,68) = -65 ;
A(9,65) = -0.85 ;
A(9,66) = -0.85 ;
A(9,67) = -0.85 ;
A(9,68) = -0.805 ;
A(10,65) = -0.826 ;
A(10,66) = -0.77 ;
A(10,67) = -0.7 ;
A(10,68) = -0.67 ;
A(11,65) = -30100 ;
A(11,66) = -32800 ;
A(11,67) = -34800 ;
A(11,68) = -37400 ;
A(12,65) = -348.6 ;
A(12,66) = -405 ;
A(12,67) = -513 ;
A(12,68) = -739.2 ;
A(13,69) = -32 ;
A(13,70) = -40 ;
A(13,71) = -50 ;
A(13,72) = -65 ;
A(14,69) = -0.85 ;
A(14,70) = -0.85 ;
A(14,71) = -0.85 ;
A(14,72) = -0.805 ;
A(15,69) = -0.826 ;
A(15,70) = -0.77 ;
A(15,71) = -0.7 ;
A(15,72) = -0.67 ;
A(16,69) = -348.6 ;
A(16,70) = -405 ;
A(16,71) = -513 ;
A(16,72) = -739.2 ;
A(17,69) = 32 ;
A(17,70) = 40 ;
A(17,71) = 50 ;
A(17,72) = 65 ;
A(18,69) = 0.85 ;
A(18,70) = 0.85 ;
A(18,71) = 0.85 ;
A(18,72) = 0.805 ;
A(19,69) = 0.826 ;
A(19,70) = 0.77 ;
A(19,71) = 0.7 ;
A(19,72) = 0.67 ;
A(20,69) = 348.6 ;
A(20,70) = 405 ;
A(20,71) = 513 ;
A(20,72) = 739.2 ;
A(21,69) = 1;
A(21,70) = 1;
A(21,71) = 1;
A(21,72) = 1;
A(22,69) = -1;
A(22,70) = -1;
A(22,71) = -1;
A(22,72) = -1;
A(23,73) = -16 ;
A(23,74) = -20 ;
A(23,75) = -24 ;
A(23,76) = -28 ;
A(23,77) = -32 ;
A(23,78) = -36 ;
A(23,79) = -40 ;
A(24,73) = 16 ;
A(24,74) = 20 ;
A(24,75) = 24 ;
A(24,76) = 28 ;
A(24,77) = 32 ;
A(24,78) = 36 ;
A(24,79) = 40 ;
A(25,73) = -200 ;
A(25,74) = -310 ;
A(25,75) = -450 ;
A(25,76) = -620 ;
A(25,77) = -800 ;
A(25,78) = -1020 ;
A(25,79) = -1260 ;
A(26,73) = 200 ;
A(26,74) = 310 ;
A(26,75) = 450 ;
A(26,76) = 620 ;
A(26,77) = 800 ;
A(26,78) = 1020 ;
A(26,79) = 1260 ;
A(27,73) = 1;
A(27,74) = 1;
A(27,75) = 1;
A(27,76) = 1;
A(27,77) = 1;
A(27,78) = 1 ;
A(27,79) = 1 ;
A(28,73) = -1;
A(28,74) = -1;
A(28,75) = -1;
A(28,76) = -1;
A(28,77) = -1;
A(28,78) = -1 ;
A(28,79) = -1 ;
A(43,80) = 1 ;
A(43,81) = 1 ;
A(43,82) = 1 ;
A(44,80) = -1 ;
A(44,81) = -1 ;
A(44,82) = -1 ;
A(69,80) = 150 ;
A(70,81) = 450 ;
A(71,82) = 450 ;
A(67,64) = 1 ;
A(68,64) = 1 ;
A(69,64) = -1 ;
A(70,64) = -1 ;
A(71,64) = -1 ;
A(63,62) = -1 ;
A(64,62) = 1 ;
A(65,62) = 1 ;
A(66,62) = 1 ;
A(47,60) = -5 ;
A(48,60) = 5 ;
A(49,61) = -5 ;
A(50,61) = 5 ;
b = [ 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -45 45 0 0 0 0 0 0 0 0 0 0 0 0 0 205 0 -3500 0 60 36 -90 0 0 -150 450 450 ]' ;
IntCon = [1 2 5 9 10 14 15 16 17 18 19 20 21 30 31 37 38 46 47 49 50 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82] ;
opts = optimoptions('ga', ...
'PopulationSize', 1000, ...
'MaxGenerations', 500, ...
'EliteCount', 10, ...
'FunctionTolerance', 1e-8, ...
'PlotFcn', @gaplotbestf);
[x fval] = ga(fun,nvars,A,b,[],[],lb,ub,nonlcon,IntCon);
And this is my Fitness function:
function y = myFitness(x)
y = 1/1000*7*(x(6)*x(1)*(7*3 + x(9)/1000)*(6.5*3 + x(9)/1000)/1000 + 40.251660/1000*((x(26)*(x(9)/1000 + 0.5*7) + 0.5*x(27)*7 + (3 - 1)*(0.5*6.5*x(28) + 7*x(29) - 0.5*6.5*x(29)))*(6.5*3 + x(9)/1000)+ (x(22)*(x9/1000 + 0.5*6.5) + 0.5*x(23)*6.5 + 0.5*6.5*(3 - 1)*(x(24) + x(25)))*(7*3 + x(9)/1000)) + x(13)*(3 + 1)*(3 + 1)*(3.5 - x(1)/1000)*(x(9)/1000)^2 + 161.006640/1000*(3 + 1)*(3 + 1)*x(50)) + 17.7107304/1000000*(3 + 1)*(3 + 1)*(x(63) + 1)*(x(9) - 51) ;
end
Thank you so much,
Walter Roberson
2020-4-29
Your x(53), x(55), and x(56) all become 5. That gives you division by 0 in entries 106 and 107 of your nonlinear constraints, where you divide by the difference between some of those.
You need to add constraints to ensure relative order of those and that they are never equal.
Hoang Trinh
2020-4-29
编辑:Walter Roberson
2020-4-29
Thank you so much for your help,
I have added four linear constraints for x55, x53, and x56 as follows:
% Main code for optimization
fun = @myFitness;
nvars = 82;
lb = [ 200 32 0.67 0.67 30100 348.6 0 0 450 32 0.67 0.67 348.6 0 0 0 0 0 0 0 0 366.7 366.7 366.7 366.7 366.7 366.7 366.7 366.7 0 0 100 100 10 5 5 0 0 0 2 2 2 2 2 50 0 0 0 16 200 5 5 5 5 5 5 0 5 5 20 20 20 2 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ] ;
ub = [ 1100 65 0.85 0.85 37400 739.2 0 0 1000 65 0.85 0.85 739.2 1 1 1 1 1 1 1 1 1833.33 1833.33 1833.33 1833.33 1833.33 1833.33 1833.33 1833.33 1 1 1100 1200 1100 50 50 1 1 0 400 400 400 400 50 1000 1 1 0 40 1260 10000 10000 1000 10000 1000 1000 1 10000 1000 300 300 300 500 600 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ] ;
% Nonlinear constraints
nonlcon = @nlcon;
% Linear constraints
A = zeros([74 82]) ;
A(1,2) = -1;
A(2,3) = -1;
A(3,4) = -1;
A(4,5) = -1;
A(5,6) = -1;
A(8,2) = 1 ;
A(9,3) = 1 ;
A(10,4) = 1 ;
A(11,5) = 1 ;
A(12,6) = 1 ;
A(13,10) = 1 ;
A(14,11) = 1 ;
A(15,12) = 1 ;
A(16,13) = 1 ;
A(17,10) = -1;
A(18,11) = -1;
A(19,12) = -1;
A(20,13) = -1;
A(45,9) = -1;
A(46,9) = 1 ;
A(49,9) = 1 ;
A(50,9) = -1 ;
A(47,1) = 1;
A(48,1) = -1;
A(52,1) = 21/8 ;
A(53,1) = 21/8 ;
A(54,1) = 21/8 ;
A(55,1) = 21/8 ;
A(56,1) = 21/8 ;
A(57,1) = 21/8 ;
A(58,1) = 21/8 ;
A(59,1) = 21/8 ;
A(60,1) = 5 ;
A(61,2) = 1 ;
A(62,1) = -1 ;
A(61,10) = -1 ;
A(62,9) = -7.5;
A(66,9) = -1;
A(68,9) = -0.6;
A(71,9) = 0.6;
A(29,14) = 1 ;
A(30,14) = -1 ;
A(29,15) = 1 ;
A(30,15) = -1 ;
A(31,16) = 1 ;
A(32,16) = -1 ;
A(31,17) = 1 ;
A(32,17) = -1 ;
A(33,18) = 1 ;
A(34,18) = -1 ;
A(33,19) = 1 ;
A(34,19) = -1 ;
A(35,20) = 1 ;
A(36,20) = -1 ;
A(35,21) = 1 ;
A(36,21) = -1 ;
A(52,22) = -1 ;
A(53,23) = -1 ;
A(54,24) = -1 ;
A(55,25) = -1 ;
A(56,26) = -1 ;
A(57,27) = -1 ;
A(58,28) = -1 ;
A(59,29) = -1 ;
A(60,24) = -1 ;
A(37,30) = 1 ;
A(38,30) = -1 ;
A(37,31) = 1 ;
A(38,31) = -1 ;
A(39,37) = 1 ;
A(40,37) = -1 ;
A(39,38) = 1 ;
A(40,38) = -1 ;
A(41,46) = 1 ;
A(42,46) = -1 ;
A(41,47) = 1 ;
A(42,47) = -1 ;
A(45,45) = 1 ;
A(46,45) = -1 ;
A(45,49) = 0.5;
A(46,49) = -0.5 ;
A(63,49) = 1.5 ;
A(65,49) = -1.5 ;
A(66,49) = 2 ;
A(67,49) = -15 ;
A(70,49) = 15 ;
A(64,46) = 20 ;
A(65,47) = 36 ;
A(23,49) = 1 ;
A(24,49) = -1 ;
A(25,50) = 1 ;
A(26,50) = -1 ;
A(1,65) = 32 ;
A(1,66) = 40 ;
A(1,67) = 50 ;
A(1,68) = 65 ;
A(2,65) = 0.85 ;
A(2,66) = 0.85 ;
A(2,67) = 0.85 ;
A(2,68) = 0.805 ;
A(3,65) = 0.826 ;
A(3,66) = 0.77 ;
A(3,67) = 0.7 ;
A(3,68) = 0.67 ;
A(4,65) = 30100 ;
A(4,66) = 32800 ;
A(4,67) = 34800 ;
A(4,68) = 37400 ;
A(5,65) = 348.6 ;
A(5,66) = 405 ;
A(5,67) = 513 ;
A(5,68) = 739.2 ;
A(6,65) = 1 ;
A(6,66) = 1 ;
A(6,67) = 1 ;
A(6,68) = 1 ;
A(7,65) = -1 ;
A(7,66) = -1 ;
A(7,67) = -1 ;
A(7,68) = -1 ;
A(8,65) = -32 ;
A(8,66) = -40 ;
A(8,67) = -50 ;
A(8,68) = -65 ;
A(9,65) = -0.85 ;
A(9,66) = -0.85 ;
A(9,67) = -0.85 ;
A(9,68) = -0.805 ;
A(10,65) = -0.826 ;
A(10,66) = -0.77 ;
A(10,67) = -0.7 ;
A(10,68) = -0.67 ;
A(11,65) = -30100 ;
A(11,66) = -32800 ;
A(11,67) = -34800 ;
A(11,68) = -37400 ;
A(12,65) = -348.6 ;
A(12,66) = -405 ;
A(12,67) = -513 ;
A(12,68) = -739.2 ;
A(13,69) = -32 ;
A(13,70) = -40 ;
A(13,71) = -50 ;
A(13,72) = -65 ;
A(14,69) = -0.85 ;
A(14,70) = -0.85 ;
A(14,71) = -0.85 ;
A(14,72) = -0.805 ;
A(15,69) = -0.826 ;
A(15,70) = -0.77 ;
A(15,71) = -0.7 ;
A(15,72) = -0.67 ;
A(16,69) = -348.6 ;
A(16,70) = -405 ;
A(16,71) = -513 ;
A(16,72) = -739.2 ;
A(17,69) = 32 ;
A(17,70) = 40 ;
A(17,71) = 50 ;
A(17,72) = 65 ;
A(18,69) = 0.85 ;
A(18,70) = 0.85 ;
A(18,71) = 0.85 ;
A(18,72) = 0.805 ;
A(19,69) = 0.826 ;
A(19,70) = 0.77 ;
A(19,71) = 0.7 ;
A(19,72) = 0.67 ;
A(20,69) = 348.6 ;
A(20,70) = 405 ;
A(20,71) = 513 ;
A(20,72) = 739.2 ;
A(21,69) = 1;
A(21,70) = 1;
A(21,71) = 1;
A(21,72) = 1;
A(22,69) = -1;
A(22,70) = -1;
A(22,71) = -1;
A(22,72) = -1;
A(23,73) = -16 ;
A(23,74) = -20 ;
A(23,75) = -24 ;
A(23,76) = -28 ;
A(23,77) = -32 ;
A(23,78) = -36 ;
A(23,79) = -40 ;
A(24,73) = 16 ;
A(24,74) = 20 ;
A(24,75) = 24 ;
A(24,76) = 28 ;
A(24,77) = 32 ;
A(24,78) = 36 ;
A(24,79) = 40 ;
A(25,73) = -200 ;
A(25,74) = -310 ;
A(25,75) = -450 ;
A(25,76) = -620 ;
A(25,77) = -800 ;
A(25,78) = -1020 ;
A(25,79) = -1260 ;
A(26,73) = 200 ;
A(26,74) = 310 ;
A(26,75) = 450 ;
A(26,76) = 620 ;
A(26,77) = 800 ;
A(26,78) = 1020 ;
A(26,79) = 1260 ;
A(27,73) = 1;
A(27,74) = 1;
A(27,75) = 1;
A(27,76) = 1;
A(27,77) = 1;
A(27,78) = 1 ;
A(27,79) = 1 ;
A(28,73) = -1;
A(28,74) = -1;
A(28,75) = -1;
A(28,76) = -1;
A(28,77) = -1;
A(28,78) = -1 ;
A(28,79) = -1 ;
A(43,80) = 1 ;
A(43,81) = 1 ;
A(43,82) = 1 ;
A(44,80) = -1 ;
A(44,81) = -1 ;
A(44,82) = -1 ;
A(69,80) = 150 ;
A(70,81) = 450 ;
A(71,82) = 450 ;
A(67,64) = 1 ;
A(68,64) = 1 ;
A(69,64) = -1 ;
A(70,64) = -1 ;
A(71,64) = -1 ;
A(63,62) = -1 ;
A(64,62) = 1 ;
A(65,62) = 1 ;
A(66,62) = 1 ;
A(47,60) = -5 ;
A(48,60) = 5 ;
A(49,61) = -5 ;
A(50,61) = 5 ;
A(51,55) = 1;
A(51,53) = -1;
A(72,55) = 1;
A(72,53) = -1;
A(73,55) = 1;
A(73,56) = -1;
A(74,55) = -1;
A(74,56) = 1;
b = [ 0 0 0 0 0 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -45 45 0 0 0 0 0 0 0 0 0 0 0 0 0 205 0 -3500 0 60 36 -90 0 0 -150 450 450 0 0 0 ]' ;
IntCon = [1 2 5 9 10 14 15 16 17 18 19 20 21 30 31 37 38 46 47 49 50 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82] ;
opts = optimoptions('ga', ...
'PopulationSize', 1000, ...
'MaxGenerations', 500, ...
'EliteCount', 10, ...
'FunctionTolerance', 1e-8, ...
'PlotFcn', @gaplotbestf);
[x fval] = ga(fun,nvars,A,b,[],[],lb,ub,nonlcon,IntCon);
But it still resulted in an error message. :(
Kind Regards,
Walter Roberson
2020-4-29
A(51,55) = 1;
A(51,53) = -1;
That expresses that (1) * x(55) + (-1) * x(53) <= b(51) . b(51) is 0, so you are expressing that x(55)-x(53) <= 0, which is to say that x(55) <= x(53) . But that still allows them to be equal, and when they are equal, you get the division by 0.
Linear constraints are A*x' <= b not A*x' < b.
If you want < then you need to make b(51) negative, even if it is only -realmin()
Hoang Trinh
2020-4-30
I have made some changes like this:
A(51,55) = 1;
A(51,53) = -1;
A(72,56) = 1;
A(72,55) = -1;
with
b(51) = 0.1 ;
b(72) = 0.1 ;
So now, x(55) - x(53) <= 0.1 ; and x(56) - x(55) <= 0.1;
Still, the error has not been fixed. :(
回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!发生错误
由于页面发生更改,无法完成操作。请重新加载页面以查看其更新后的状态。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
亚太
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
