fsolve in backward euler method

5 次查看(过去 30 天)
Please help to implement fsolve for a third order ODE
%%
clear
close all
clc
%%
%% The differential equation is : x''' = 2 x'' + 6x
%Boundary condition
%x(0) =1, x'(0) = 0, x''(0)=1,
% Changing a third order differential equation into a system of linear
% equation
%x(1) = x ;
%%x(2) = x' = x(1)'
%x(3) = x'' = x(2)'
%x(3)' = 2 x(3) + 6 x(1)
t0 = 0; %initial value
x0 = [1;0;1]; %initial condition(given)
tEnd = 5; %end of time step
h = 0.001; %step size
N = (tEnd-t0)/h; %number of interval
T = t0:h:tEnd;
X = zeros(3, N+1); %a series of 3-element column vectors
X(:,1) = x0;
for i = 1:N
%fi = [X(2,i);X(3,i);2*X(3,i)+6*X(1,i)];
x = fsolve(@(x) x-X(:,i) - h* %%%%%%%%%); <-- problem.
X(:, i+1) = x;
end
%%
%ploting===================================================================
plot(T,X,'.','LineWidth',2);
title('Approximate solution Euler Implicit Method')

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by