A generalized eigenvalue problem
5 次查看(过去 30 天)
显示 更早的评论
a generalized eigenvalue problem can be written as follows
A*X=B*X*D
I need to solve a large matrix problem,i.e.the dim of A and B is large.Both A and B are semi-definite matrix.B is non-singular via adding some constant values to the diagonal elements of B.
The problem is when I use [V,D]=eig(A,B) to solve this eigen-problem, the element of both V and D include real and imaginary parts, e.g.0.0124+0.0000i
but,if I calculate B^-1=inv(B),T=B^-1*A first, then use [V,D]=eig(T) to solve this problem instead, the result seems to be right,because the element of V and D does not include imaginary part,e.g.0.0123.
So,I'm very confused...I think these two scenarios are equivalent,but why not the result?
0 个评论
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!