The Still Image compression For Effective Use Of Bandwidth
1 次查看(过去 30 天)
显示 更早的评论
Sir,
My project is "The Still Image compression For Effective Use Of Bandwidth". I have sucessfully compiled my code for gray scale images but while trying to compress color images getting an error that to while calculating mean square error(MSE) and peak signal to noise ratio (PSNR)indicating " ??? Error using ==> minus Number of array dimensions must match for binary array op. So, please kindly reply me soon what is the problem in the code and why it is possible to calculate MSE and PSNR only for gray scale images and not for color images.
MY code is
%%reading an image
input_image=imread('1.png');
input_image = imresize(input_image,[256 256]);
imshow(input_image);
handles.input_image=input_image;
[r c p]=size(input_image);
if p==3 %%%if p=3 then it is coler image
warndlg('convert color image into Gray image');
input_image=rgb2gray(input_image); %%%converting color image into gray image
end
input_image=imresize(input_image,[256 256]);
input_image=double(input_image);
[LL LH HL HH]= dwt2(input_image,'haar');
new_image=[...
LL LH
HL HH ...
];
figure, imshow(new_image,[]);
handles.new_image=new_image;
image_LL=handles.new_image;
[row1 col1] = size(image_LL);
Image_LL_resize = round(reshape(image_LL,[1 row1*col1]));
New_Image_LL_resize= round(Image_LL_resize/10);
%%%%%%%%% Huffman Encoding %%%%%%%%%%%
leng = length( New_Image_LL_resize);
maxr = max( New_Image_LL_resize);
minr = min( New_Image_LL_resize);
j = 1;
for i = minr:maxr
N = find(New_Image_LL_resize==i);
count = length(N);
probab(j) = count/leng;
j = j+1;
end
size_of_dict = length(probab);
[dictval avglen] = huffmandict([minr:maxr],[probab]);
y = huffmanenco( New_Image_LL_resize,dictval);
bitstream_image = y;
%%%%% finding length of bitstream %%%%%
bitstream = length(y);
disp('Length of Compressed Huffman Bitstream');
display(bitstream);
handles.dictval=dictval;
handles.y=y;
warndlg('Encoding Process Completed');
%%decoding
dictval=handles.dictval;
y=handles.y;
Dec_Out = huffmandeco(y,dictval);
len=length(Dec_Out);
row1=sqrt(len);
col1=row1;
New_Decim = reshape(Dec_Out,[row1 col1]);
New_Decim = New_Decim*10;
% figure(1),imshow(New_Decim,[]);
warndlg('Decoding Proces Completed');
handles.New_Decim = New_Decim;
%%Inverse DWT
Rec_image = handles.New_Decim;
%apply idwt
% img_idwt = idwt2(
[rows cols] = size(Rec_image);
for i = 1:rows/2
for j = 1:cols/2
CA(i,j) = Rec_image(i,j);
end
end
for i = rows/2+1:rows
for j = 1:cols/2
CH(i-rows/2,j) = Rec_image(i,j);
end
end
for i = 1:rows/2
for j = cols/2+1:cols
CV(i,j-cols/2) = Rec_image(i,j);
end
end
for i = rows/2+1:rows
for j = cols/2+1:cols
CD(i-rows/2,j-cols/2) = Rec_image(i,j);
end
end
% figure,imshow(CA,[]);
% figure,imshow(CH,[]);
% figure,imshow(CV,[]);
% figure,imshow(CD,[]);
output_image = idwt2(CA,CH,CV,CD,'haar');
%axes(handles.axes4);
figure, imshow(output_image,[]);
handles.output_image = output_image;
%%MSE
img1 = handles.input_image;
img2 = handles.output_image;
img2=imresize(img2,[256 256]);
[M N] = size(img1);
img2 = uint8(img2);
MSE = sum(sum((img1-img2).^2))/(M*N);
set(handles.edit1,'string',MSE);
handles.MSE = MSE;
%%PSNR
PSNR =abs(10*log10(255*255/MSE));
2 个评论
采纳的回答
Walter Roberson
2011-4-13
To handle a color image, compress the R, G, and B planes separately.
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Denoising and Compression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!