Multiplication of a Sparse Matrix With Diagonal Matrices

4 次查看(过去 30 天)
I have a sparse m x m square matrix L (which is actually a Laplacian matrix of a large graph) and an m x1 vector d. I want to create a diaognal matrix D whose diagonal is populated with the entries in d and then generate
normL = D * L * D
Currently, I am creating a sparse diaognal matrix as
D = spdiags(d, 0, m, m)
and then I use D * L * D.
I wonder whether there is a more efficient way to do this given that the (i, j)-th elements of normL and L are related by
normL(i, j) = D(i) * D(j) * L(i, j).
Thank you very much.

采纳的回答

Arjun
Arjun 2024-9-12
Hi,
I see that you are seeking an efficient method to compute "normL" using a Laplacian matrix (L) and a diagonal matrix (D).
The efficient method for computing “normL = D * L * D”, where “L” is a sparse Laplacian matrix and “D” is a diagonal matrix formed from a vector “d”, involves leveraging element-wise operations to bypass the need for full matrix multiplications. Instead of constructing the diagonal matrix “D”, the method calculates the outer product “d * d' ”, yielding a matrix where each element is the product of corresponding elements from “d”. This outer product is then multiplied element-wise with the sparse matrix “L”, effectively computing each element of “normL(i,j) = D(i) * D(j) * L(i,j)”.
Kindly refer to the code below for better understanding:
% Parameters
m = 5; % Size of the matrix
% Generate a random sparse Laplacian matrix L
% For simplicity, let's create a random sparse symmetric matrix
A = sprand(m, m, 0.3); % Sparse random matrix with 30% density
L = A + A'; % Make it symmetric
L = L - diag(sum(L, 2)); % Ensure it's a Laplacian matrix
% Generate a random vector d
d = rand(m, 1);
% Compute normL using the efficient method
dOuter = d * d'; % Outer product
normL = L .* dOuter; % Element-wise multiplication
disp(normL);
This method avoids the need to explicitly construct a diagonal matrix and perform full matrix multiplication operations, thereby being more efficient compared to the traditional method.
I hope it helps!
  2 个评论
Kamal Premaratne
Kamal Premaratne 2024-9-12
Thank you so much Arjun. It has been over 4 years since I posted the question, and yet I am so glad that you responded. And yes, your answer helps tremendously. Thanks again.
Arjun
Arjun 2024-9-12
I am very thankfull that you took time to come back and appreciate my effort!

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Operating on Diagonal Matrices 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by