error using nnet.internal.cnn.layer.util.fullyConnectedGPUImageStrategy
13 次查看(过去 30 天)
显示 更早的评论
disp('Track: network training section begins!')
trainOpt = trainingOptions('adam', ...
'InitialLearnRate',options.learningRate, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',options.dropFactor, ...
'LearnRateDropPeriod',options.learnRateSch, ...
'L2Regularization',options.weightDecay, ...
'MaxEpochs',options.maxNumEpochs, ...
'MiniBatchSize',options.batchSize, ...
'Shuffle','every-epoch', ...
'ValidationData',dataPrep.val, ...
'ValidationFrequency',options.valFreq, ...
'ExecutionEnvironment','gpu', ...
'ValidationPatience', 10, ... % Disables automatic training break-off
'Plots','none');
gpuDevice(1)
[trainedNet, trainingInfo] = trainNetwork(dataPrep.train{1,:}, dataPrep.train{2,:}, net, trainOpt);
save([options.netSaveDir,'net_ant=',num2str(options.ch(i)),'_pilot=',num2str(options.pilotSize)], 'trainedNet')
% show NMSE on validation dataset
nanLoc = isnan(trainingInfo.ValidationLoss);
valNMSE = trainingInfo.ValidationLoss(~nanLoc);
options.valNMSE = valNMSE;
R_NMSE(j, i) = options.valNMSE(end);
0 个评论
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Deep Learning Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!