Third Order Boundary Value Problem (BVP) with Boundary Coditions only in Terms of Derivatives

7 次查看(过去 30 天)
I need to solve the boundary value problem (related to flow of fluids in conical ducts):
Y''' + 1 - Y'^2 = 0
with all the three BCs bing only on the derivatives of Y (and none on Y itself):
Y'(0)=Y"(inf)=0
Y'(inf)=1
By formulating the problem exactly as suggested here:
dYdX = @(X,Y) [Y(2); Y(3); Y(2).^2-1]; % Differential equation
res = @(ya,yb) [ya(2); yb(3); yb(2)-1];
SolYinit = bvpinit([0 5], [0; 0; 0]);
Fsol = bvp4c(dYdX, res, SolYinit);
X = Fsol.x;
Y = Fsol.y;
I tried to solve the problem, but received the Jacobian error.
Is it possible that the error is generated because the BCs do not contain Y(...), and is there a way around his problem?
  4 个评论
darova
darova 2020-7-8
I mean this
Y'(0)=Y"(inf)=0
Y'(inf)=1
res = @(ya,yb) [ya(2); yb(3); yb(2)-1];
THere are only derivatives. There should be at least one Y(0) or Y(inf) (starting or final position)
Saeid
Saeid 2020-7-8
That's what I suspected, thanks! Then I guess the way the problem is posed in the original literature source is not right.

请先登录,再进行评论。

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by