Support Vector Machine: Linear or Non-linear
9 次查看(过去 30 天)
显示 更早的评论
Tiago Dias
2020-7-11
回答: Thiago Henrique Gomes Lobato
2020-7-12
Hi,
I have a doubt on SVM.
SVM is a linear or non-linear method, or it depend on the type of kernel i am using.
If i am using a polynomial or rbf kernel, i think that the SVM-poly or SVM-rbf is non-linear.
But if i am using a linear kernel, does that make the SVM non-linear or sill linear?
Thanks for any upcoming help
0 个评论
采纳的回答
Thiago Henrique Gomes Lobato
2020-7-12
SVM is always linear in the parameters, but using non-linear kernels allows it to consider non-linear relations between the data by transforming then to another feature space (ex: both f(x,y) = a*x+b*y and f(x,y) = a*x*y+b*log(y)/x are linear in the parameters, but the second example is a non-linear function in x and y), especially with kernels like rbf that can have an infinite equivalent in the parameter space. You can check own matlab documentation page about the method for some more insights. One of the main advantages of SVM is to replace this feature space transformation by a kernel function, since then only the dot product is needed and, depending of your kernel, can produce an enourmous computational and description gain.
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Regression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!