Taking too long to get the output (Wilson theta method)

3 次查看(过去 30 天)
Could I know where I might be wrong in the following code as it is taking too long get the result.
WilsonMethod.m
function [depl,vel,accl,t] = WilsonMethod(M,K,C,R)
clc ;
sdof = length(K) ;
% Time step and time duration
ti = 0. ;
dt = 0.1 ;
tf = 500 ;
t = ti:dt:tf ;
nt = length(t) ;
% Initialize the displacement,velocity and acceleration matrices
depl = zeros(sdof,nt) ;
vel = zeros(sdof,nt) ;
accl = zeros(sdof,nt) ;
Reff = zeros(sdof,nt) ;
% Initial conditions
depl(:,1) = zeros ;
vel(:,1) = zeros ;
accl(:,1) =zeros;% M\(R-K*depl(:,1)-C*vel(:,1)) ;
% Integration constants
tita = 1.4 ; % Can be changed
a0 = 6/(tita*dt)^2 ; a1 = 3/(tita*dt) ; a2 = 2*a1 ;
a3 = tita*dt/2 ; a4 = a0/tita ; a5 = -a2/tita ;
a6 = 1-3/tita ; a7 = dt/2 ; a8 = dt^2/6 ;
% Form Effective Stiffness Matrix
Keff = K+a0*M+a1*C ;
%Time step starts
for it = 1:nt-1
% Calculating Effective Load
Reff(:,it) = R(:,it)+tita*(R(:,it)-R(:,it))+M*(a0*depl(:,it)+a2*vel(:,it)+2*accl(:,it))+....
C*(a1*depl(:,it)+2*vel(:,it)+a3*accl(:,it)) ;
% Solving for displacements at time (t+dt)
depl(:,it+1) = Keff\Reff(:,it) ;
% Calculating displacements, velocities and accelerations at time t+dt
accl(:,it+1) = a4*(depl(:,it+1)-depl(:,it))+a5*(vel(:,it))+a6*accl(:,it) ;
vel(:,it+1) = vel(:,it)+a7*(accl(:,it+1)+accl(:,it)) ;
depl(:,it+1) = depl(:,it)+dt*vel(:,it)+a8*(accl(:,it+1)+2*accl(:,it)) ;
end
Ex.m
MA = [8070000,0,-629468070;0,8070000,112980;-629468070,112980,6.800000000000000e+10];
Ad = [8.053095218400001e+06,0,-4.831857131040000e+08;0,2.167940435676214e+05,0;-4.831857131040000e+08,0,3.865485704832000e+10];
Ca = [0,0,0;0,3.241885080000000e+05,0;0,0,1.301151158327999e+09];
Cm = [4.12e+04,0,-2.82e+06;0,1.19e+04,0;-2.82e6,0,3.11e+08];
M = MA+Ad;
K = Ca+Cm;
C = zeros(size(K)) ; % Damping Matrix
Fg = -79086000; %Gravitational force
Fbuoy = 7.844814740000000e+07; %Buoyancy force
Fp = 2.712318560000001e+06; %Heave force
profile on
t = 0:0.1:500
for i = 1:length(t)
Fh = hydro(t(i))
FhT = transpose(Fh)
R(:,i) = [-334731.8545+27939.6+6.5*10^5+FhT(i);-3517000+Fg+Fbuoy+Fp;-112510430.2+3.44*10^6+266.5*10^5+(FhT(i)*18)];
end
profile off
profile viewer
[depl,vel,accl,t] = WilsonMethod(M,K,C,R) ;
depl'
figure(1), clf
plot(t,depl(1,:)), xlabel('time(s)'), ylabel('surge(m)')
title ('Surge vs Time')
figure(2), clf
plot(t,depl(2,:)), xlabel('time(s)'), ylabel('heave(m)')
title ('heave vs Time')
figure(3), clf
plot(t,depl(3,:)), xlabel('time(s)'), ylabel('Pitch(deg)')
title ('Pitch vs Time')
  3 个评论
Satish Jawalageri
Satish Jawalageri 2020-7-20
Thanks for your reply. Here is the code:
hydro.m
function [Fh] = hydro(t)
Cd = 0.6;
Ca = 0.9699;
R = 4.7;
t=0:0.1:500;
for i=1:length(t)
vel = compute_wavevelocity(t(i));
acc = compute_waveacceleration(t(i));
fun = sym((0.5*997*Cd*2*R*abs(vel)*vel)+(Ca*997*pi*(R^2)*acc)+(pi*(R^2)*997*acc));
Fh(1,i) = double(int(fun,0,-120));
end
plot(t,Fh), xlabel('time(s)'), ylabel('Fh')
title ('Fh vs Time')
end
compute_wavevelocity.m:
function velocity = compute_wavevelocity(t)
T = 10;
WN = (9.8*(T^2))/(2*pi());
k = (2*pi())/WN;
omega = (2*pi())/T;
y = [320;310;300;290;280;270;260;250;240;230;220;210;200];
d = 320;
H = 4;
vel = (omega*H/2)* ((cosh(k*y))/(sinh(k*d)))* cos((k*0)-(omega*t));
velocity = mean(vel,1);
end
compute_waveacceleration.m:
function acceleration = compute_waveacceleration(t)
T = 10;
WN = (9.8*(T^2))/(2*pi());
k = (2*pi())/WN;
omega = (2*pi())/T;
y = [320;310;300;290;280;270;260;250;240;230;220;210;200];
d = 320;
H = 4;
acc = ((omega^2)*H/2)* ((cosh(k*y))/(sinh(k*d)))* sin((k*0)-(omega*t));
acceleration = mean(acc,1);
end

请先登录,再进行评论。

采纳的回答

Serhii Tetora
Serhii Tetora 2020-7-22
Without loops it runs faster. Please check it carefully
clc;close all;clear;
MA = [8070000,0,-629468070;0,8070000,112980;-629468070,112980,6.800000000000000e+10];
Ad = [8.053095218400001e+06,0,-4.831857131040000e+08;0,2.167940435676214e+05,0;-4.831857131040000e+08,0,3.865485704832000e+10];
Ca = [0,0,0;0,3.241885080000000e+05,0;0,0,1.301151158327999e+09];
Cm = [4.12e+04,0,-2.82e+06;0,1.19e+04,0;-2.82e6,0,3.11e+08];
M = MA+Ad;
K = Ca+Cm;
C = zeros(size(K)); % Damping Matrix
Fg = -79086000; %Gravitational force
Fbuoy = 7.844814740000000e+07; %Buoyancy force
Fp = 2.712318560000001e+06; %Heave force
t = 0:0.1:500;
Fh = hydro(t);
FhT = transpose(Fh);
R(1,:) = -334731.8545 + 27939.6 + 6.5e5 + FhT;
R(2,:) = -3517000 + Fg + Fbuoy + Fp;
R(3,:) = -112510430.2 + 3.44e6 + 266.5e5 + 18*FhT;
[depl,vel,accl,t] = WilsonMethod(M,K,C,R) ;
% depl';
figure(1), clf
plot(t,depl(1,:)), xlabel('time(s)'), ylabel('surge(m)'), grid on
title ('Surge vs Time')
figure(2), clf
plot(t,depl(2,:)), xlabel('time(s)'), ylabel('heave(m)'), grid on
title ('heave vs Time')
figure(3), clf
plot(t,depl(3,:)), xlabel('time(s)'), ylabel('Pitch(deg)'), grid on
title ('Pitch vs Time')
function [depl,vel,accl,t] = WilsonMethod(M,K,C,R)
sdof = length(K) ;
% Time step and time duration
ti = 0. ;
dt = 0.1 ;
tf = 500 ;
t = ti:dt:tf ;
nt = length(t) ;
% Initialize the displacement,velocity and acceleration matrices
depl = zeros(sdof,nt) ;
vel = zeros(sdof,nt) ;
accl = zeros(sdof,nt) ;
Reff = zeros(sdof,nt) ;
% Initial conditions
depl(:,1) = zeros ;
vel(:,1) = zeros ;
accl(:,1) =zeros;% M\(R-K*depl(:,1)-C*vel(:,1)) ;
% Integration constants
tita = 1.4 ; % Can be changed
a0 = 6/(tita*dt)^2 ; a1 = 3/(tita*dt) ; a2 = 2*a1 ;
a3 = tita*dt/2 ; a4 = a0/tita ; a5 = -a2/tita ;
a6 = 1-3/tita ; a7 = dt/2 ; a8 = dt^2/6 ;
% Form Effective Stiffness Matrix
Keff = K+a0*M+a1*C ;
%Time step starts
for it = 1:nt-1
% Calculating Effective Load
Reff(:,it) = R(:,it)+tita*(R(:,it)-R(:,it))+M*(a0*depl(:,it)+a2*vel(:,it)+2*accl(:,it))+....
C*(a1*depl(:,it)+2*vel(:,it)+a3*accl(:,it)) ;
% Solving for displacements at time (t+dt)
depl(:,it+1) = Keff\Reff(:,it) ;
% Calculating displacements, velocities and accelerations at time t+dt
accl(:,it+1) = a4*(depl(:,it+1)-depl(:,it))+a5*(vel(:,it))+a6*accl(:,it) ;
vel(:,it+1) = vel(:,it)+a7*(accl(:,it+1)+accl(:,it)) ;
depl(:,it+1) = depl(:,it)+dt*vel(:,it)+a8*(accl(:,it+1)+2*accl(:,it)) ;
end
end
function [Fh] = hydro(t)
Cd = 0.6;
Ca = 0.9699;
R = 4.7;
vel = compute_wavevelocity(t);
acc = compute_waveacceleration(t);
fun = sym((0.5*997*Cd*2*R*abs(vel).*vel)+(Ca*997*pi*(R^2).*acc)+(pi*(R^2)*997.*acc));
Fh = double(int(fun,0,-120));
end
function velocity = compute_wavevelocity(t)
T = 10;
WN = (9.8*(T^2))/(2*pi);
k = 2*pi/WN;
omega = 2*pi/T;
y = [320;310;300;290;280;270;260;250;240;230;220;210;200];
d = 320;
H = 4;
vel = (omega*H/2)* ((cosh(k*y))/(sinh(k*d)))* cos((k*0)-(omega.*t));
velocity = mean(vel,1);
end
function acceleration = compute_waveacceleration(t)
T = 10;
WN = (9.8*(T^2))/(2*pi);
k = 2*pi/WN;
omega = 2*pi/T;
y = [320;310;300;290;280;270;260;250;240;230;220;210;200];
d = 320;
H = 4;
acc = ((omega^2)*H/2)* ((cosh(k*y))/(sinh(k*d)))* sin((k*0)-(omega.*t));
acceleration = mean(acc,1);
end

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Programming 的更多信息

产品


版本

R2019b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by