computing error on least square fitting
1 次查看(过去 30 天)
显示 更早的评论
Hi, i slove a system of equations (Ax-b) using least square method. i get an output with x like [2.5; -11.1; 0.8; 0.5]. the status flag is zero with system converging at iteration 2 and relative residual of 0.019. I want to calculate the error on my fit i--e with which certainity my solution is accurate. Can i claim that the residual which is norm of (Ax-b)/b means that my fit has an error of 1.9%?if not how can i calculate error on my fit?
回答(1 个)
Bruno Luong
2020-8-15
Can i claim that the residual which is norm of (Ax-b)/b
No make it
norm(A*x-b) / norm(b)
3 个评论
Bruno Luong
2020-8-15
If you want an unnambiguous mathematical statement, just state exactly what mean:
norm(A*x-b) / norm(b) is approximatively 0.019
At your place I would say in the speaking language
The fit has a relative l2-norm residual of 1.9%.
The fit error usually designates the difference between the true and the estimated fit (parameters). So to me you shouldn't use the word "error."
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Probability Distributions 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!