fastest way to apply A\B on each matrix page

1 次查看(过去 30 天)
I would like to find an efficient fast way for calculating:
for i = 1:n
X(:,:,i) = A(:,:,i)\B(:,:,i)
end
where A and B are 10*10*n, and 10*1*n size matrices respectively. the matrices are large and must be called meny times. therefore I was thinking of replacing "for loops" with a faster way that does it very fast and not iteratively.

采纳的回答

Bruno Luong
Bruno Luong 2020-8-17
编辑:Bruno Luong 2020-8-17
Why insist on ARRAYFUN, your for-loop is perfectly fine. ARRAYFUN is a "vectoriztion" scam.
n = 100;
A = rand(10,10,n);
B = rand(10,1,n);
X = arrayfun(@(p) A(:,:,p)\B(:,:,p), 1:n, 'unif', 0);
X = cat(3,X{:});
  5 个评论
hosein Javan
hosein Javan 2020-8-17
Bruno Luong. sorry for misunderstanding. I did not mean to decieve. I only thought that arrayfun is a best replace for "loop". I'll edit the question.
hosein Javan
hosein Javan 2020-8-17
I studied your MultiSolver. it was using concatenation diagonally and make a sparse matrix as I said. I see there's no better way. however ur using of repmat and rehsape was something speedy to extract unknowns without loops. I accept your answer. thanks, but I'd like to mention once more that it was misunderstanding. please don't use words like "big scam". thanks again.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Operating on Diagonal Matrices 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by