Gray Image enhancement problem
3 次查看(过去 30 天)
显示 更早的评论
Hi all I am doing an image enhancement for gray level image using the harmony search algorithm (edge preserving) I got the result but now it has many noises like this image: http://imageshack.us/photo/my-images/5/ladyk.jpg/
So please can anyone help me or give me any advice to remove this noise
0 个评论
采纳的回答
Image Analyst
2013-1-10
It looks like most of the "noise" areas are bright specks and patches. If that is the case, I'd get a binary image (mask) of those (say, by thresholding), then "inpaint" them using roifill(). This will smear the gray level just outside the white blobs, into the white blobs. So essentially the white blobs get painted over with the surrounding gray level, which it seems can be anywhere from really dark or black, to gray in your sample image.
2 个评论
Image Analyst
2013-1-11
You can use fft2(), then zero out higher frequency parts of the fft, then inverse fft with ifft2(). However, that won't do a good job since it will just blue your edges and your white splotches will still be there, just blurred. Below is a related demo:
% 2D FFT Demo
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
imtool close all; % Close all imtool figures.
clear; % Erase all existing variables.
workspace; % Make sure the workspace panel is showing.
format longg;
format compact;
fontSize = 20;
% Change the current folder to the folder of this m-file.
if(~isdeployed)
cd(fileparts(which(mfilename)));
end
% Check that user has the Image Processing Toolbox installed.
hasIPT = license('test', 'image_toolbox');
if ~hasIPT
% User does not have the toolbox installed.
message = sprintf('Sorry, but you do not seem to have the Image Processing Toolbox.\nDo you want to try to continue anyway?');
reply = questdlg(message, 'Toolbox missing', 'Yes', 'No', 'Yes');
if strcmpi(reply, 'No')
% User said No, so exit.
return;
end
end
% Read in a standard MATLAB gray scale demo image.
folder = fullfile(matlabroot, '\toolbox\images\imdemos');
baseFileName = 'cameraman.tif';
% Get the full filename, with path prepended.
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
% File doesn't exist -- didn't find it there. Check the search path for it.
fullFileName = baseFileName; % No path this time.
if ~exist(fullFileName, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
% Read in image.
grayImage = imread('cameraman.tif');
[rows columns numberOfColorChannels] = size(grayImage)
if numberOfColorChannels > 1
grayImage = rgb2gray(grayImage);
end
% Display original grayscale image.
subplot(2, 2, 1);
imshow(grayImage)
title('Original Gray Scale Image', 'FontSize', fontSize)
% Perform 2D FFTs
fftOriginal = fft2(double(grayImage));
shiftedFFT = fftshift(fftOriginal);
subplot(2, 2, 2);
imshow(real(shiftedFFT));
title('Real Part of Spectrum', 'FontSize', fontSize)
subplot(2, 2, 3);
imshow(imag(shiftedFFT));
title('Imaginary Part of Spectrum', 'FontSize', fontSize)
% Display magnitude and phase of 2D FFTs
subplot(2, 2, 4);
imshow(log(abs(shiftedFFT)),[]);
colormap gray
title('Log Magnitude of Spectrum', 'FontSize', fontSize)
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
% Now convolve with a 2D rect function.
figure;
rectWidth = 10;
rectHeight = 5;
kernel = ones(rectHeight, rectWidth) / (rectHeight * rectWidth);
% Display it
subplot(2, 2, 1);
k = padarray(kernel, [3, 3]); % Just for display.
imshow(k, []);
axis on;
title('Kernel', 'FontSize', fontSize)
% Enlarge figure to full screen.
set(gcf, 'units','normalized','outerposition',[0 0 1 1]);
% Convolve kernel (box filter) with the image
filteredImage = conv2(double(grayImage), kernel, 'same');
% Display filtered image.
subplot(2, 2, 2);
imshow(filteredImage,[]);
title('Filtered Image', 'FontSize', fontSize)
% Perform 2D FFT on the filtered image to see its spectrum.
% We expect to see a sinc multiplication effect.
% It should look like the original but with a sinc pattern overlaid on it.
fftFiltered = fft2(double(filteredImage));
shiftedFFT = fftshift(fftFiltered);
% Display magnitude of the 2D FFT of the filtered image.
subplot(2, 2, 3);
imshow(log(abs(shiftedFFT)),[]);
colormap gray
title('Log Magnitude of Spectrum - Note sinc multiplication', 'FontSize', fontSize)
更多回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!