Solve first order nonlinear ODE

10 次查看(过去 30 天)
Hello I am tryin to solve this nonlinear ODE
with the IC
This is my code
tspan = [0 5];
x0 = 3;
[t,x] = ode45(@(t,x) (x^4)-(7*x^2)+6*x, tspan, x0);
plot(t,x,'b')
My problem is that I get the following error: Warning: Failure at t=2.004757e-02. Unable to meet integration tolerances without reducing the step size below the smallest value allowed (5.551115e-17) at time t. What should I do because the graph of the solution looks worng. Thanks.
  2 个评论
J. Alex Lee
J. Alex Lee 2020-9-8
If you have a solution form that you expect, what is it? It's not surprising that the thing explodes for x(0)>1, for which your rate of change increases to produce a snowball effect.
Missael Hernandez
Well is should be in the form
Wolfram doesn't give the solution Matlab does. Matlab gives this, which I think is wrong

请先登录,再进行评论。

采纳的回答

Alan Stevens
Alan Stevens 2020-9-8
The value of x increases far too quickly, and reaches a value beyond the numerics ability to cope with when x(0) > 2. Works just fine if x(0) = 1.5, or 0.5, say.

更多回答(1 个)

Sam Chak
Sam Chak 2020-9-8
编辑:Sam Chak 2020-9-8
The x(t) response rises rapidly. It cannot go pass t = 0.0463782 sec.
The x(t) response diverges for x(0) > 2 and converges to some steady-state points for x(0) < 2.
tspan = [0 0.046378];
x0 = 2.5;
[t, x] = ode45(@(t,x) (x^4) - (7*x^2) + 6*x, tspan, x0);
plot(t, x, 'b')
  2 个评论
J. Alex Lee
J. Alex Lee 2020-9-8
so there you go, taken together with my comment and Alan's answer, looks like you are all set.
Missael Hernandez
Oh ok I see. Thank you guys so much!

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by