Solving 4th order ode using ode45
9 次查看(过去 30 天)
显示 更早的评论
How to solve the following 4th order ode using ode45 solver
3 个评论
Bjorn Gustavsson
2020-9-15
...and aren't you missing one boundary-value?
@madhan - perhaps just as "easy" to use shooting method to find a solution that trails of towads flat at infinity?
采纳的回答
Alan Stevens
2020-9-15
Here's some coding that basically solves the equation. I've no idea what the value of k should really be, but the constants chosen give a consistent result. The choice of f'''(0) is based on the original equation with the other x=0 values plugged in; where f''(0) is a chosen to give a seemingly reasonable result!
k = -0.002;
xspan = [0 100];
d2fdx20 = -1;
F0 = [0 1 d2fdx20 (1-k*(d2fdx20^2))/(1-2*k)];
[x, F] = ode45(@rates, xspan, F0, [], k);
f = F(:,1);
dfdx = F(:,2);
plot(x, f, x, dfdx),grid
xlabel('x'), ylabel('f and dfdx')
legend('f','dfdx')
function dFdx = rates(x,F,k)
f = F(1);
dfdx = F(2);
d2fdx2 = F(3);
d3fdx3 = F(4);
if x==0
d4fdx4 = 0;
else
d4fdx4 = (d3fdx3 +f.*d2fdx2 - dfdx.^2 - 2*k*dfdx.*d3fdx3 + k*d2fdx2.^2)./(k*f);
end
dFdx = [dfdx; d2fdx2; d3fdx3; d4fdx4];
end
23 个评论
Bjorn Gustavsson
2020-9-25
Did the numerical solution differ by much? If not then perhaps only numerical deviations? Since you have a non-linear ODE there might be many solutions (right?), have you gotten all analytically? If not then the numerical solution might be one of the other valid solutions.
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!