Hi Valeria,
Plotting with lsqnonlin regression
2 次查看(过去 30 天)
显示 更早的评论
Hello,
I wrote a function that uses lsqnonlin to generate predictions but I'm wondering how I can use those predictions to make plots and visulaize them? Should I be using lsqcurvefit instead? Any and all suggestions are welcome! The function lsq calls errFun and I've included them below for reference. Thank you in advance for your help!
function results = lsq(M) % takes Nx3 matrix where columns are Lx, Ly, gap
results = table();
tempTable = table();
idx = nchoosek(1:size(M,1), 3); % Nx3 matrix of all index trios
a = [];
Lx = [];
Ly = [];
gap = [];
for k = 1:size(idx, 1)
ix = idx(k ,:); % current idx trio, row vector
Lx = M(ix,1)';
Ly = M(ix,2)';
gap = M(ix,3);
L = sqrt((M(ix,1).^2 + M(ix,2).^2)/2);
% Here is where I'm having trouble. I passed the four arguments and the
% errors says "Too many input argumetns".
lsq = lsqnonlin(@(coeff) errFun(coeff, L, M(ix,3)), [0; 1; 1]);
a(k) = lsq(1);
tempTable.Lx = Lx(:)';
tempTable.Ly = Ly( :)';
tempTable.L = L(:)';
tempTable.Prediction = a(k)';
results = [results;tempTable];
end
results.PercentErr = abs((results.Prediction - 4.5670) ./ 4.5670) * 100;
end
function fErr = errFun(coeff, xdata, ydata)
%parameters
a = coeff(1);
b = coeff(2);
c = coeff(3);
% calculate prediction from model
yModel = a + b*exp(-c .* xdata);
fErr = yModel - ydata;
end
0 个评论
回答(1 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Linear Regression 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!