Computing the absolute error

5 次查看(过去 30 天)
How do I compute the absolute error n = |xn − xr| for n = 0, 1, . . . , 50, where we take the output xr from MATLAB’s fzero function with initial guess xinit = 1 to be the “true” root, given this.
xn = bisectionMethod(f, a, b, numiter)
f1= @(x) cos(x)-x;
f2= @(x) exp(-x^2)-x;
f3= @(x) (x^3)-(1/2);
x1= bisectionMethod(f1, 0, 1, 50);
x2= bisectionMethod(f2, 0, 1, 50);
x3= bisectionMethod(f3, 0, 1, 50);

采纳的回答

Ameer Hamza
Ameer Hamza 2020-10-8
编辑:Ameer Hamza 2020-10-8
Consider one function
f1 = @(x) cos(x)-x;
x1r = fzero(f1, 0);
You can do it like this
n = 0:50;
x1n = zeros(size(n)); % all solutions for f1
for i = 1:numel(x1n)
x1n(i) = bisectionMethod(f1, 0, 1, n(i));
end
err = abs(x1n-z1r);
A more efficient approach is to modify bisectionMethod() function such that it returns a complete vector in a single call. The above code is repeating the same calculations several times.

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Generating and Calling Reentrant Code 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by