Getting Empty sym: 0-by-1 when using solve function
3 次查看(过去 30 天)
显示 更早的评论
Hello!
I have a system of 5 nonlinear equations(eq1...eq5) that I try to solve with solve but ,The answer I get is: "Empty sym: 0-by-1" for all variables, my descision variables are "w,Po,Pr,An,Al,Mu" and another are constant parameters.
in addition i got this "Warning: Cannot find explicit solution.> In solve (line 316) ",i am beginner in matlab and cant solve this problem. Can anybody help me?
syms Rho bo br beta delta gamma c alpha Phi Eta K w %parameters
syms w Po Pr An Al Mu S %decision variables
Pr =(delta^2*w - 2*K*alpha - 2*Rho*w - 2*br*w - 2*An^(1/2)*beta - 2*Po*Rho + 2*Mu*Po*Rho + 2*K*Mu*alpha + 2*Mu*Rho*w + 2*Mu*br*w + 2*An^(1/2)*Mu*beta)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho);
Al =(delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2;
eq1 =Phi*S + K*alpha - Po*bo - (Po - c)*(bo + Rho*((2*Rho - 2*Mu*Rho)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) + 1) - (Rho*delta^2*gamma*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta))/(((delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)^(1/2)*(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)) + An^(1/2)*beta - (c - w)*(Rho*((2*Rho - 2*Mu*Rho)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) + 1) + (br*(2*Rho - 2*Mu*Rho))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) + (Rho*delta^3*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta))/(((delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)^(1/2)*(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)) + gamma*((delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)^(1/2) - Rho*(Po - (delta^2*w - 2*K*alpha - 2*Rho*w - 2*br*w - 2*An^(1/2)*beta - 2*Po*Rho + 2*Mu*Po*Rho + 2*K*Mu*alpha + 2*Mu*Rho*w + 2*Mu*br*w + 2*An^(1/2)*Mu*beta)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)) - (2*Mu*Rho*delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2
eq2 =An^(1/2)*beta - alpha*(K - 1) + (Po - c)*((Rho*(delta^2 - 2*Rho - 2*br + 2*Mu*br + 2*Mu*Rho))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) - (delta^2*gamma*(Rho + br)*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta))/(((delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)^(1/2)*(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)) + (c - w)*((Rho*(delta^2 - 2*Rho - 2*br + 2*Mu*br + 2*Mu*Rho))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) + (br*(delta^2 - 2*Rho - 2*br + 2*Mu*br + 2*Mu*Rho))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) + (delta^3*(Rho + br)*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta))/(((delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)^(1/2)*(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)) + delta*((delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)^(1/2) + Rho*(Po - (delta^2*w - 2*K*alpha - 2*Rho*w - 2*br*w - 2*An^(1/2)*beta - 2*Po*Rho + 2*Mu*Po*Rho + 2*K*Mu*alpha + 2*Mu*Rho*w + 2*Mu*br*w + 2*An^(1/2)*Mu*beta)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)) - (br*(delta^2*w - 2*K*alpha - 2*Rho*w - 2*br*w - 2*An^(1/2)*beta - 2*Po*Rho + 2*Mu*Po*Rho + 2*K*Mu*alpha + 2*Mu*Rho*w + 2*Mu*br*w + 2*An^(1/2)*Mu*beta))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) + (2*Mu*delta^2*(Rho + br)*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2
eq3 =(Po - c)*(beta/(2*An^(1/2)) - (Rho*(beta/An^(1/2) - (Mu*beta)/An^(1/2)))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) + (beta*delta^2*gamma*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta))/(2*An^(1/2)*((delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)^(1/2)*(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)) - (c - w)*(beta/(2*An^(1/2)) + (Rho*(beta/An^(1/2) - (Mu*beta)/An^(1/2)))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) + (br*(beta/An^(1/2) - (Mu*beta)/An^(1/2)))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) + (beta*delta^3*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta))/(2*An^(1/2)*((delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)^(1/2)*(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)) - (Mu*beta*delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta))/(An^(1/2)*(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2) - 1
eq4 =(Rho*((2*Po*Rho + 2*K*alpha + 2*Rho*w + 2*br*w + 2*An^(1/2)*beta)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) - ((4*Rho + 4*br)*(delta^2*w - 2*K*alpha - 2*Rho*w - 2*br*w - 2*An^(1/2)*beta - 2*Po*Rho + 2*Mu*Po*Rho + 2*K*Mu*alpha + 2*Mu*Rho*w + 2*Mu*br*w + 2*An^(1/2)*Mu*beta))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2) - (delta^2*gamma*(4*Rho + 4*br)*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(((delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)^(1/2)*(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^3))*(Po - c) + (c - w)*(Rho*((2*Po*Rho + 2*K*alpha + 2*Rho*w + 2*br*w + 2*An^(1/2)*beta)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) - ((4*Rho + 4*br)*(delta^2*w - 2*K*alpha - 2*Rho*w - 2*br*w - 2*An^(1/2)*beta - 2*Po*Rho + 2*Mu*Po*Rho + 2*K*Mu*alpha + 2*Mu*Rho*w + 2*Mu*br*w + 2*An^(1/2)*Mu*beta))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2) + (br*(2*Po*Rho + 2*K*alpha + 2*Rho*w + 2*br*w + 2*An^(1/2)*beta))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho) - (br*(4*Rho + 4*br)*(delta^2*w - 2*K*alpha - 2*Rho*w - 2*br*w - 2*An^(1/2)*beta - 2*Po*Rho + 2*Mu*Po*Rho + 2*K*Mu*alpha + 2*Mu*Rho*w + 2*Mu*br*w + 2*An^(1/2)*Mu*beta))/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2 + (delta^3*(4*Rho + 4*br)*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(((delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2)^(1/2)*(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^3)) - (delta^2*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^2 + (2*Mu*delta^2*(4*Rho + 4*br)*(Po*Rho + K*alpha - Rho*w - br*w + An^(1/2)*beta)^2)/(delta^2 - 4*Rho - 4*br + 4*Mu*br + 4*Mu*Rho)^3
eq5 =Phi*(Po - c) - Eta*S
Ans=solve(eq1,eq2,eq3,eq4,eq5,Po,w,An,S,Mu);
0 个评论
回答(1 个)
Star Strider
2020-10-23
编辑:Star Strider
2020-10-23
First, ‘[M1,M2,M3,M4,M5,]’ do not exist anywhere, so please do not refer to them.
Second, the correct syntax for solve is:
Ans=solve([eq1,eq2,eq3,eq4,eq5],[Po,w,An,S,Mu]);
My computer is currently ‘Busy’ attempting to run that, so I have no results to post. If it finishes in a few minutes (rather than my stopping it to do other things), I will post the results.
EDIT — (23 Oct 2020 at 17:51)
The Symbolic Math Toolbox cannot find a solution for any of those variables.
2 个评论
Star Strider
2020-10-24
There apparently is no analytic solution.
You might be able to do this numerically, depending on the result you want, so see if the Optimization Toolbox functions will do what you want.
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!