Finding roots using Newton raphson method

7 次查看(过去 30 天)
Here is my code and my output is a function and not a numerical value as I expected. Can anyone debug this code?
syms f y x df
f=@(y) exp(y)-(sin(pi*y/3));
df=@(y) exp(y)-((pi*cos(pi*y/3))/3);
x(1)=-3.0;
error=0.00001;
for i=1:10
x(i+1)=x(i)-((f(x(i)))/df(x(i)));
err(i)=abs((x(i+1)-x(i))/x(i));
if err(i)<error
break
end
end
root=x(i);
output:
- (sin((pi*(exp(-3)/(pi/3 + exp(-3)) + 3))/3) + exp(- exp(-3)/(pi/3 + exp(-3)) - 3))/(exp(- exp(-3)/(pi/3 + exp(-3)) - 3) - (pi*cos((pi*(exp(-3)/(pi/3 + exp(-3)) + 3))/3))/3) - exp(-3)/(pi/3 + exp(-3)) - 3

采纳的回答

Alan Stevens
Alan Stevens 2020-10-27
Just get rid of the first line, you don't need it
f=@(y) exp(y)-(sin(pi*y/3));
df=@(y) exp(y)-((pi*cos(pi*y/3))/3);
x(1)=-3.0;
error=0.00001;
for i=1:10
x(i+1)=x(i)-((f(x(i)))/df(x(i)));
err(i)=abs((x(i+1)-x(i))/x(i));
if err(i)<error
break
end
end
root=x(i);
disp(root)
  3 个评论
Alan Stevens
Alan Stevens 2020-10-27
This is what I get:
>> f=@(y) exp(y)-(sin(pi*y/3));
df=@(y) exp(y)-((pi*cos(pi*y/3))/3);
x(1)=-3.0;
error=0.00001;
for i=1:10
x(i+1)=x(i)-((f(x(i)))/df(x(i)));
err(i)=abs((x(i+1)-x(i))/x(i));
if err(i)<error
break
end
end
root=x(i);
disp(root)
-3.0454
R Abhinandan
R Abhinandan 2020-10-27
Thank you, im sorry i didnt know that we have to save before running the code.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Symbolic Math Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by