Improve network generalization NarX
    3 次查看(过去 30 天)
  
       显示 更早的评论
    
Very good I would do the following: divide my data into 10 parts and each train separately checking with other cells, is crosvalidation guess but I'm a little busy and I'm not sure how. I could explain a little further as performing autocorrelation, cross correlation and other steps to achieve better network generalization NarX and clarify concepts?
Thank you very much.
0 个评论
采纳的回答
  Greg Heath
      
      
 2013-2-15
        I just posted an answer to your question on the NEWSGROUP
Hope this helps
Thank you for formally accepting my answer.
Greg
2 个评论
  Greg Heath
      
      
 2013-2-15
				
      编辑:Greg Heath
      
      
 2013-2-16
  
			If you would try your code on the polution_data set we can compare results. I have used the delays ID=1:2, FD=1:2 and H = 16 with dividetrain and MSEgoal = 0.08*Ndof*MSE00a/Neq. A lower goal will cause training to extend to maxepoch (default = 1000; I will change it to 100)). The results are R2a = 0.92 for openloop and 0.88 for closed loop.
I will be experimentinng with this data for some time: Linear trend removal, Significant delays, validation stopping and minimizing H. Not necessarily in that order.
Greg
更多回答(0 个)
另请参阅
类别
				在 Help Center 和 File Exchange 中查找有关 Deep Learning Toolbox 的更多信息
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!