nonlinear fit for a sum function

3 次查看(过去 30 天)
i want to fit the following function to a given data i have.
%DATA
X=linspace(1,20,100)';
Y=2*exp(0.13*X)+11.2 + 4*exp(0.13*X)+11.2 + 7*exp(0.13*X)+11.2; %consider it as a given data
n=[2 4 7]; %given
b=[0.1 11]; %initial guess
i used fitnlm as follows:
modelfun=@(b,x) 2.*exp(b(1).*x)+b(2) + 4.*exp(b(1).*x)+b(2) + 7.*exp(b(1).*x)+b(2);
beta = fitnlm(X,Y,modelfun,b)
Now, i need help with writing 'modelfun' in a nondirect way because the real problem i have is () ,
and obviously it is not practical to write it directly as above.

采纳的回答

Ameer Hamza
Ameer Hamza 2020-11-9
This is the general way to write this problem
%DATA
X=linspace(1,20,100)';
Y=2*exp(0.13*X)+11.2 + 4*exp(0.13*X)+11.2 + 7*exp(0.13*X)+11.2; %consider it as a given data
n=[2 4 7]; %given
b=[0.1 11]; %initial guess
m = numel(n);
modelfun = @(b,x) sum(n).*exp(b(1).*x)+m*b(2);
beta = fitnlm(X,Y,modelfun,b)
  3 个评论
Ameer Hamza
Ameer Hamza 2020-11-9
The solution will change from model to model, for example, for the model in your comment, following will work
modelfun = @(b,x) sum(exp((n-m)/b(1).*x), 2);
This uses some automatic-array expansion trick which might be difficult to understand at the beginning, so for a general solution, you can just write a for-loop.
fun = @(b,x) modelfun(b,x,n,m);
beta = fitnlm(X,Y, fun,b)
function y = modelfun(b,x,n,m)
y = zeros(size(x));
for i = 1:numel(n)
y = y + exp(n(i)-m(i)/b(1).*x);
end
end
Dor Bettran
Dor Bettran 2020-11-9
thank you very much, very helpful!

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Nonlinear Regression 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by