Numerically integrating Acceleration to get displacement?
7 次查看(过去 30 天)
显示 更早的评论
I want to rephrase my last question, as i was not very clear there.
What i am trying to do is integrate the following second order, nonlinear ode, which is an expression for angular acceleration,
twice, to get the displacement, and compare it with the actual expression for displacement:
BOTH ω and A are specified initially. They are constants.

(corrected from
)

if initial conditions are required, then x(0)=pi/4 and dx/dt (t=0) =0
this has to be integrated w.r.t time, t, twice, between the limits t=0 and t=50 (it can be any time interval)
im not sure if the interval for x has to be defined as well.
the equation for displacement is


Any help would be appreciated!
0 个评论
采纳的回答
Ameer Hamza
2020-11-15
Are you sure that the equations are correct? The solution you posted does not satisfy the initial conditions.
Generally, such a problem can be solved using the Symbolic toolbox
syms x(t) w A
dxdt = diff(x);
dx2dt2 = diff(x,2);
ode = dx2dt2 == -A*w*sin(dxdt);
cond = [x(0)==pi/4 dxdt(0)==0];
sol = dsolve(ode, cond)
or ode45() can be used for a numerical solution.
4 个评论
Ameer Hamza
2020-11-15
Yes, in that case, initial conditions will be zero and you can use cumtrapz().
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Ordinary Differential Equations 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!