How do I find the given eigenvectors

6 次查看(过去 30 天)
kimi
kimi 2020-11-16
Hello,
I have a 8x8 identity eigenvalue matrix (ss) and the answer 4x8 eigenvector matrix (ivect). I'm unsure of the process to get to the eigenvector matrix.
>> ss
ss =
1.0e+02 *
Columns 1 through 5
0.0000 + 2.7894i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 - 2.7894i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 1.9015i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 1.9015i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 + 1.3474i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
Columns 6 through 8
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i
-0.0000 - 1.3474i 0.0000 + 0.0000i 0.0000 + 0.0000i
0.0000 + 0.0000i -0.0000 + 1.4094i 0.0000 + 0.0000i
0.0000 + 0.0000i 0.0000 + 0.0000i -0.0000 - 1.4094i
ivect =
1.0e+02 *
Columns 1 through 5
0.0100 + 0.0000i 0.0100 + 0.0000i 0.0100 + 0.0000i 0.0100 + 0.0000i 0.0100 + 0.0000i
0.0000 - 0.0011i 0.0000 + 0.0767i 0.0000 - 0.0097i 0.0000 + 0.0112i 0.0000 + 0.0011i
0.0000 - 0.0040i 0.0000 + 0.0645i 0.0000 + 0.2500i 0.0000 - 1.0500i 0.0000 + 0.0040i
-0.0097 + 0.0000i 0.0183 + 0.0000i 0.2850 + 0.0000i 0.9660 + 0.0000i -0.0097 + 0.0000i
Columns 6 through 8
0.0100 + 0.0000i 0.0100 + 0.0000i 0.0100 + 0.0000i
0.0000 - 0.0767i 0.0000 + 0.0097i 0.0000 - 0.0112i
0.0000 - 0.0645i 0.0000 - 0.2500i 0.0000 + 1.0500i
0.0183 + 0.0000i 0.2850 + 0.0000i 0.9660 + 0.0000i

回答(1 个)

Athul Prakash
Athul Prakash 2020-11-19
I presume that you've obtained these eigenvalues by calling the 'eig' function in MATLAB. You may try calling the same with a second output argument to obtain corresponding eigenvectors as well -
[A,B] = eig(m1);
I suggest going through the documentation of 'eig' for a fuller understanding, if requried - The exmaples, in particular, may be useful.
Hope it Helps!

类别

Help CenterFile Exchange 中查找有关 Linear Algebra 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by