
Fitting gaussian exponential to logscale
8 次查看(过去 30 天)
显示 更早的评论
Hello!
I have been trying to fit a log scale plot to an exponential function given below:
fun=@(t,x)2*(t(1))^2.*(1-exp(-((x./t(2)).^(2*t(3)))));
But I am unable to get a fit that is even close to the data plot. this is what I tried to do:
function fun = myfun(t,x,y)
t(1) = t(1)*1e-9;
t(2) = t(2)*1e-9;
t(3) = t(3)*1e-9;
xx=log(x)
yy=log(y)
fun=@(t,x)2*(t(1))^2.*(1-exp(-((x./t(2)).^(2*t(3)))));;
t=lsqcurvefit(fun,t,x,y)
plot(xx,yy,'ko',xx,fun(t,xx),'b-')
end
and then caling the function as:
t=[7.25553e-10 2.2790e-9 2.27908e-9]
myfun(t,x,y)
But this is what I get instead:

The x and y data is attached as .txt
I tried playing with different inital values but none of them gives me close to a good fit. I dont understand what is wrong here.
Could someone please help me out ?
I also do not have access to the curve fitting tool or any other tool in matlab just so you know. Any help would be really appreciated!
Thank you!
0 个评论
采纳的回答
Alan Stevens
2020-11-23
The logs of the y values are negative, whereas your function will return positive values only! You are probably better off trying the following
% Scale data
xx = 10^7*x;
yy = 10^18*y;
fun=@(t,x) 2*(t(1))^2.*(1-exp(-((x./t(2)).^(2*t(3)))));
t0 = [1 1 0.5];
t = fminsearch(@(t) fcn(t,xx,yy,fun),t0);
disp(t)
Y = fun(t,xx);
% Rescale curve fit
yfit = Y*10^-18;
plot(x,y,'o',x,yfit),grid
xlabel('x [m]'),ylabel('y [m^2]')
legend('data','curve fit')
function F = fcn(t,xx,yy,fun)
Y = fun(t,xx);
F = norm(Y-yy);
end
which results in the following fit

2 个评论
Alan Stevens
2020-11-23
I don't think you can get that automatically from fminsearch. However, it's possible that taking the same approach with lsqcurvefit, or lsqnonlin, the error range might be returned automatically (I can't tell as I don't have the Optimization toolbox).
更多回答(1 个)
Mathieu NOE
2020-11-23
hello
this a code that seems to work
hope it helps
I prefered to simplify as much the work of the optimizer , so first convert x and y in log scale and shift origin so curve start at x = y = 0
clc
clear all
close all
T = readtable('trial.txt');
C = table2array(T);
x = C(2:end,1);
y = C(2:end,2);
% convert x and y in log scale
lx = log10(x);
ly = log10(y);
% center origine so lx and ly first point = 0
mlx = min(lx);
lxc = lx - mlx;
mly = min(ly);
lyc = ly - mly;
% resample for higher points density in the first half of lx
% seems to help get better results
lxxc = linspace(min(lxc),max(lxc),length(lxc));
lyyc = interp1(lxc,lyc,lxxc);
plot(lxc, lyc,'+b',lxxc, lyyc,'+r');
f = @(a,b,x) a.*(1-exp(b.*x));
obj_fun = @(params) norm(f(params(1),params(2),lxxc)-lyyc);
sol = fminsearch(obj_fun, [1,1]);
a_sol = sol(1);
b_sol = sol(2);
figure;
plot(lxc, lyc, '+', 'MarkerSize', 10, 'LineWidth', 2)
hold on
plot(lxxc, f(a_sol, b_sol, lxxc), '-');grid
% finally
% lyc = a.*(1-exp(b.*lxc)); % converted back to :
% ly = mly + a.*(1-exp(b.*(lx - mlx)));
% and in linear scale :
y_fit = 10.^(mly + a_sol.*(1-exp(b_sol.*(log10(x) - mlx))));
figure;
plot(x, y, '+', 'MarkerSize', 10, 'LineWidth', 2)
hold on
plot(x, y_fit, '-');grid

4 个评论
Mathieu NOE
2020-11-23
no, it's basically where you define the model fit equation
the fminsearch will use that funtion in it's evaluation
for more details , look at : help fminsearch
tx
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Get Started with Curve Fitting Toolbox 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!