This is an ode of order 4 - so odeToVectorField will reformulate it to a system of 4 ode with order 1:
>> pretty(V)
/ Y \
| 2 |
| |
| Y |
| 3 |
| |
| Y |
| 4 |
| |
| / 3221 5618 \ |
| | ------- + ---- | Y |
| | 2 2397 | 2 2 Y |
| \ 2397 r / 4 / 4045 16854 \ |
| --------------------- - ---- - | -------- - ----- | Y |
| r r | 2 12809 | 3 |
\ \ 12809 r / /
Thus you have to tell ode45 a number of 4 initial points - one for every equation. Using some fantasy values would give:
ri=0.53;
syms w(r)
Nrad(r)=-(( (r^-2) - 1)./((ri^-2)+1));
Ntheta(r)=(( (r^-2) + 1)./((ri^-2)-1));
[V] = odeToVectorField(diff(w, 4) + (2/r)*diff(w,3) - ((1/r^2) + 6*Nrad(r) )*diff(w,2) + ((((1/r^2)-6*Ntheta(r) ))/r)*diff(w,1) == 0 )
M = matlabFunction(V,'vars', {'r','Y'})
sol = ode45(M,[1 10],[0 0 0.53 0.9]);
fplot(@(x)deval(sol,x,1), [1, 10])