How can i evaluate this surface integral? (It has some singularities)

1 次查看(过去 30 天)
Im trying to integrate the following function over X (0->Pi) and then y (0-> 2*Pi).
When i create a surface (x,y,z) after a very fine meshgrid (1000 x 1000), i see what appears to be 4 very sharp singularities.
Is there any way to evaluate this integral by ignoring or smoothing over those singularities?
Any help would be greatly appreciated.
FYI i am using matlab 2011b.
@(x,y)-sin(x).*(sin(y).^2.*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(cos(x).^2.*cos(y).^2.*1.05e2+cos(y).^2.*sin(x).^2.*4.58e2-cos(x).^4.*sin(y).^2.*9.72e2-sin(x).^4.*sin(y).^2.*9.72e2+cos(x).^2.*sin(x).^2.*sin(y).^2.*1.944e3).*(3.0./5.0e3)+cos(x).^2.*cos(y).^2.*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(cos(x).^2.*cos(y).^2.*-1.087e3+cos(y).^2.*sin(x).^2.*3.15e2+cos(x).^4.*sin(y).^2.*3.15e2+sin(x).^4.*sin(y).^2.*3.15e2-cos(x).^2.*sin(x).^2.*sin(y).^2.*6.3e2).*(1.0./5.0e3)+cos(y).^2.*sin(x).^2.*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(cos(x).^2.*cos(y).^2.*1.05e2-cos(y).^2.*sin(x).^2.*9.72e2+cos(x).^4.*sin(y).^2.*4.58e2+sin(x).^4.*sin(y).^2.*4.58e2-cos(x).^2.*sin(x).^2.*sin(y).^2.*9.16e2).*(3.0./5.0e3)-cos(x).^2.*cos(y).^4.*sin(x).^2.*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(4.29e2./5.0e2)-cos(x).*cos(y).^2.*sin(y).*(cos(x).^3.*sin(y)-cos(x).*sin(x).^2.*sin(y)).*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(4.29e2./5.0e2)+cos(y).^2.*sin(x).*sin(y).*(sin(x).^3.*sin(y)-cos(x).^2.*sin(x).*sin(y)).*1.0./(cos(x).^2.*cos(y).^2+cos(x).^2.*sin(y).^2+cos(y).^2.*sin(x).^2-sin(x).^2.*sin(y).^2).^2.*(4.29e2./5.0e2))

回答(1 个)

Mike Hosea
Mike Hosea 2013-4-4
When I split the integral up into regions with difficult parts (a couple of circles) on the boundaries, I can get QUAD2D and INTEGRAL2 to integrate over the regions only if I cap the values of the integrand function (z(z>M) = M and z(z<-M)=-M). Because the value of the integral increases steadily as I increase M (until the integration fails because of numerical or minimum step size issues), I don't think the singularities are integrable, i.e. whatever you do to mitigate the singularities will probably just change the problem to an easier problem with a different answer.

类别

Help CenterFile Exchange 中查找有关 Numerical Integration and Differentiation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by