Calculating euclidean distances in a matrix

1 次查看(过去 30 天)
I have to a matrix n x 2 in which each row represent a point in a Cartesian space in X and Y. The distance I have to calculate is between a row and its follower so at the end I have an array (n-1) x 1. I ve coded a simply function but since n = 50 000 it takes a lot of time to compute. How to speed up the entire process?
That s my function:
function [Dist] = Distances(A)
n = length(A)
Dist = (n -1);
for i=1:n
if i == n
break
end
Dist(i,1)= sqrt((A(i+1,1)- A(i,1))^2 + (A(i+1,2)- A(i,2))^2)
i= i+1
end

回答(2 个)

KSSV
KSSV 2020-12-16
编辑:KSSV 2020-12-16
% demo data
n = 100 ;
A = rand(n,2) ;
dA = diff(A) ;
d = sqrt(sum(dA.^2,2)) ;
  1 个评论
Image Analyst
Image Analyst 2020-12-16
This is what I'd do too. It's fast:
tic
n = 50000; % fifty thousand
xy = rand(n,2);
dxy = diff(xy);
d = sqrt(sum(dxy.^2,2));
toc
On my computer it takes 0.003 seconds for 50,000 rows.

请先登录,再进行评论。


Star Strider
Star Strider 2020-12-16
Use the pdist function, then squareform.
Example —
x = randi(99, 5, 2); % Create Matrix
d = pdist(x);
m = squareform(d);
The information you want are in the upper and lower diagonals of ‘m’, so:
Result = diag(m,1);
equivalently:
Result = diag(m,-1);
This is likely faster than an explicit loop, however I did not time it with a large matrix.

类别

Help CenterFile Exchange 中查找有关 Descriptive Statistics 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by