Train PPO Agent to Swing Up and Balance Pendulum

10 次查看(过去 30 天)
Hello
I'm trying to learn the Swing Up and Balance Pendulum example in PPOAgent. However, PPOAgent is not able to train it properly. How can I improve it?
I think the structure of the network is not working.
I am attaching the code below
clear all
rng(0)
%Envitronment
mdl = 'rlSimplePendulumModel';
open_system(mdl)
env = rlPredefinedEnv('SimplePendulumModel-Continuous');
set_param('rlSimplePendulumModel/create observations','ThetaObservationHandling','sincos');
obsInfo = getObservationInfo(env);
numObs = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numAct = actInfo.Dimension(1);
env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);
Ts = 0.05;
Tf = 20;
%PPOAgent
criticLayerSizes = [200 100];
actorLayerSizes = [200 100];
criticNetwork = [imageInputLayer([numObs 1 1],'Normalization','none','Name','observations')
fullyConnectedLayer(criticLayerSizes(1),'Name','CriticFC1')
reluLayer('Name','CriticRelu1')
fullyConnectedLayer(criticLayerSizes(2),'Name','CriticFC2')
reluLayer('Name','CriticRelu2')
fullyConnectedLayer(1,'Name','CriticOutput')
];
criticOpts = rlRepresentationOptions('LearnRate',1e-3);
critic = rlValueRepresentation(criticNetwork,env.getObservationInfo, ...
'Observation',{'observations'},criticOpts);
%ActorNetwork
inPath = [ imageInputLayer([numObs 1 1], 'Normalization','none','Name','observations')
fullyConnectedLayer(numAct,'Name','infc') ]; % 2 by 1 output
% path layers for mean value (2 by 1 input and 2 by 1 output)
% using scalingLayer to scale the range
meanPath = [ tanhLayer('Name','tanh'); % output range: (-1,1)
scalingLayer('Name','scale','Scale',actInfo.UpperLimit) ]; % output range: (-10,10)
% path layers for standard deviations (2 by 1 input and output)
% using softplus layer to make it non negative
sdevPath = softplusLayer('Name', 'splus');
outLayer = concatenationLayer(3,2,'Name','mean&sdev');
% add layers to network object
net = layerGraph(inPath);
net = addLayers(net,meanPath);
net = addLayers(net,sdevPath);
net = addLayers(net,outLayer);
% connect layers: the mean value path output MUST be connected to the FIRST input of the concatenationLayer
net = connectLayers(net,'infc','tanh/in'); % connect output of inPath to meanPath input
net = connectLayers(net,'infc','splus/in'); % connect output of inPath to sdevPath input
net = connectLayers(net,'scale','mean&sdev/in1'); % connect output of meanPath to gaussPars input #1
net = connectLayers(net,'splus','mean&sdev/in2'); % connect output of sdevPath to gaussPars input #2
actorOptions = rlRepresentationOptions('LearnRate',1e-3);
Actor = rlStochasticActorRepresentation(net,obsInfo,actInfo,...
'Observation',{'observations'}, actorOptions);
opt = rlPPOAgentOptions('ExperienceHorizon',512,...
'ClipFactor',0.2,...
'EntropyLossWeight',0.02,...
'MiniBatchSize',64,...
'NumEpoch',3,...
'AdvantageEstimateMethod','gae',...
'GAEFactor',0.95,...
'SampleTime',0.05,...
'DiscountFactor',0.9995);
agent = rlPPOAgent(actor,critic,opt);
%Train
maxepisodes = 5000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
'MaxEpisodes',maxepisodes,...
'MaxStepsPerEpisode',maxsteps,...
'ScoreAveragingWindowLength',5,...
'Verbose',false,...
'Plots','training-progress',...
'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',-740,...
'SaveAgentCriteria','EpisodeReward',...
'SaveAgentValue',-740);
trainingStats = train(agent,env,trainOpts);
simOptions = rlSimulationOptions('MaxSteps',500);
experience = sim(env,agent,simOptions);

回答(2 个)

Emmanouil Tzorakoleftherakis
I think the fully connected layer in the actor may not have enough nodes (actorLayerSizes is not used anywhere).
Regardless, you can let Reinforcement Learning Toolbox create an initial architecture for the actor and the critic by following the example here. You can provide some initialization options to tailor the default architecture, or you can modify it afterwards.

shoki kobayashi
shoki kobayashi 2021-1-6
Emmanouil Tzorakoleftherakis, thanks for the reply.
I have increased the number of fully connected layer nodes in the Actor as you pointed out. However, the learning does not work. I would like to know how I can improve it.
I am attaching the code below
clear all
rng(0)
%Envitronment
mdl = 'rlSimplePendulumModel';
open_system(mdl)
env = rlPredefinedEnv('SimplePendulumModel-Continuous');
set_param('rlSimplePendulumModel/create observations','ThetaObservationHandling','sincos');
obsInfo = getObservationInfo(env);
numObs = obsInfo.Dimension(1);
actInfo = getActionInfo(env);
numAct = actInfo.Dimension(1);
env.ResetFcn = @(in)setVariable(in,'theta0',pi,'Workspace',mdl);
Ts = 0.05;
Tf = 20;
%PPOAgent
%network reference(https://github.com/gouxiangchen/ac-ppo/blob/master/PPO.py)
criticNetwork = [imageInputLayer([numObs 1 1],'Normalization','none','Name','observations')
fullyConnectedLayer(64,'Name','CriticFC1')
reluLayer('Name','CriticRelu1')
fullyConnectedLayer(256,'Name','CriticFC2')
reluLayer('Name','CriticRelu2')
fullyConnectedLayer(1,'Name','CriticOutput')
];
criticOpts = rlRepresentationOptions('LearnRate',1e-3);
critic = rlValueRepresentation(criticNetwork,env.getObservationInfo, ...
'Observation',{'observations'},criticOpts);
ActorNetwork
inPath = [ imageInputLayer([numObs 1 1], 'Normalization','none','Name','observations')
fullyConnectedLayer(128,'Name','fc_1')
reluLayer('Name','CriticRelu1')
fullyConnectedLayer(numAct,'Name','fc')
reluLayer('Name','CriticRelu2')]; % 2 by 1 output
% path layers for mean value (2 by 1 input and 2 by 1 output)
% using scalingLayer to scale the range
meanPath = [ fullyConnectedLayer(numAct,'Name','fc_mean')
tanhLayer('Name','tanh'); % output range: (-1,1)
scalingLayer('Name','scale','Scale',max(actInfo.UpperLimit)) ]; % output range: (-10,10)
% path layers for standard deviations (2 by 1 input and output)
% using softplus layer to make it non negative
sdevPath = [ fullyConnectedLayer(numAct,'Name','fc_std')
softplusLayer('Name', 'splus')];
outLayer = concatenationLayer(3,2,'Name','mean&sdev');
% add layers to network object
net = layerGraph(inPath);
net = addLayers(net,meanPath);
net = addLayers(net,sdevPath);
net = addLayers(net,outLayer);
% connect layers: the mean value path output MUST be connected to the FIRST input of the concatenationLayer
% connect layers: the mean value path output MUST be connected to the FIRST input of the concatenationLayer
net = connectLayers(net,'CriticRelu2','fc_mean/in'); % connect output of inPath to meanPath input
net = connectLayers(net,'CriticRelu2','fc_std/in'); % connect output of inPath to sdevPath input
net = connectLayers(net,'scale','mean&sdev/in1'); % connect output of meanPath to gaussPars input #1
net = connectLayers(net,'splus','mean&sdev/in2'); % connect output of sdevPath to gaussPars input #2
actorOptions = rlRepresentationOptions('LearnRate',1e-3);
Actor = rlStochasticActorRepresentation(net,obsInfo,actInfo,...
'Observation',{'observations'}, actorOptions);
PPO
opt = rlPPOAgentOptions('ExperienceHorizon',512,...
'ClipFactor',0.2,...
'EntropyLossWeight',0.02,...
'MiniBatchSize',64,...
'NumEpoch',3,...
'AdvantageEstimateMethod','gae',...
'GAEFactor',0.95,...
'SampleTime',0.05,...
'DiscountFactor',0.9995);
agent = rlPPOAgent(Actor,critic,opt);
maxepisodes = 10000;
maxsteps = ceil(Tf/Ts);
trainOpts = rlTrainingOptions(...
'MaxEpisodes',maxepisodes,...
'MaxStepsPerEpisode',maxsteps,...
'ScoreAveragingWindowLength',5,...
'Verbose',false,...
'Plots','training-progress',...
'StopTrainingCriteria','AverageReward',...
'StopTrainingValue',-740,...
'SaveAgentCriteria','EpisodeReward',...
'SaveAgentValue',-740);
trainingStats = train(agent,env,trainOpts);
plot(env)
  2 个评论
Emmanouil Tzorakoleftherakis
Seeing the plot from the Episode manager would help as well. But since the actor/critic structure seems ok, assuming the reward is similar to the respective examples, it now comes down to tweaking PPO hyperparameters or stopping criteria. For example, how did you come up with the -740 average reward? Was it from a shipping example? For hyperparameters there is really no recipe here - it's effectively trial & error. I have seen the clip factor play a big role - you may want to try 0.1 or 0.3 to see if that changes things. Depending on how the episode manager plot looks, the agent may need to explore more so increasing the entropy loss weight would be another thing to try.
shoki kobayashi
shoki kobayashi 2021-1-8
Emmanouil Tzorakoleftherakis, thanks for your reply.
Average Reward -740 was referred to Example (https://jp.mathworks.com/help/reinforcement-learning/ug/train-ddpg-agent-to-swing-up-and-balance- pendulum.html?searchHighlight=Swing%20up&s_tid=srchtitle).
The result of setting ClipFactor to 0.3 is attached below. As you can see from this figure, the learning is not stable and the Pendulum does not stand upright. 0.1 ClipFactor gives the same result. I also tried to increase Entoropy loss, but it failed. How can I improve this?

请先登录,再进行评论。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by