MATLAB equivalent functions in Keras

5 次查看(过去 30 天)
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits1)
lstmLayer(numHiddenUnits2)
fullyConnectedLayer(numResponses)
regressionLayer
];
What would be these layers be in Keras?

回答(1 个)

Aneela
Aneela 2024-9-9
Hi Ruhi Thomas,
If tf.keras is the way you imported Keras from TensorFlow, the above layers are equivalent to the following layers in Keras:
sequenceInputLayer(inputSize)
inputLayer= tf.keras.layers.Input(shape=(None, inputSize))
lstmLayer(numHiddenUnits1) –
lstm_layer1=tf.keras.layers.LSTM(numHiddenUnits1, return_sequences=True)(inputLayer)
lstmLayer(numHiddenUnits2) –
lstm_layer2=tf.keras.layers.LSTM(numHiddenUnits2, return_sequences=True)(inputLayer)
fullyConnectedLayer(numResponses)
dense_layer = tf.keras.Layers.Dense(numResponses)(lstm_layer2)
regressionLayer
  • In keras, there is no separate need for regression layer, instead we specify the loss function as part of the model compilation.
  • For a regression task, loss functions like “mean_squared_error,mean_absolute_error” are typically used.
model = Model(inputs=input_layer, outputs=dense_layer)
model.compile(optimizer='adam', loss='mean_squared_error')
Hope this helps!!

类别

Help CenterFile Exchange 中查找有关 Deep Learning Toolbox 的更多信息

产品


版本

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by