You must pass X as a floating-point matrix.

4 次查看(过去 30 天)
I am building a GUI to classify breast images. I am using SVM as the classifier technique. However, I am getting an error message. Please find my code an the error message below. Any help would be appreciated.
File=handles.File;
InputImage=handles.InputImage;
TestSet=InputImage;
Labels = table2array(File);
Training=Labels(1:2004,1:9);
class=Labels(:,10);
SVMmodel= fitcsvm(Training, class, 'KernelFunction', 'Linear', 'Standardize', true, 'ClassNames', {'1', '2'});
result = predict(SVMmodel, TestSet);
result=num2str(result);
The error message is displayed below:
Error using classreg.learning.impl.CompactSVMImpl/score (line 45)
You must pass X as a floating-point matrix.
Error in classreg.learning.classif.CompactClassificationSVM/score (line 591)
f = score(this.Impl,X,true,varargin{:});
Error in classreg.learning.classif.ClassificationModel/predict (line 411)
scores = score(this,X,varargin{:});
Error in classreg.learning.classif.CompactClassificationSVM/predict (line 433)
predict@classreg.learning.classif.ClassificationModel(this,X,varargin{:});
Error in new>pushbutton4_Callback (line 143)
result = predict(SVMmodel, TestSet);
Error in gui_mainfcn (line 95)
feval(varargin{:});
Error in new (line 42)
gui_mainfcn(gui_State, varargin{:});
Error in matlab.graphics.internal.figfile.FigFile/read>@(hObject,eventdata)new('pushbutton4_Callback',hObject,eventdata,guidata(hObject))
Error while evaluating UIControl Callback.
  1 个评论
Athrey Ranjith Krishnanunni
From the documentation for predict, it says that the syntax is
predict(Mdl,X)
where X is the predictor data, and should be a numeric array.
In your case, X is TestSet, so try running
whos('TestSet')
in the command line to see what comes up under the Size and Class headings.

请先登录,再进行评论。

采纳的回答

Ive J
Ive J 2021-1-6
Your TestSet must have the same structure as your Training set. You can try this
result = predict(SVMmodel, Labels(:, 1:9));
  3 个评论
Walter Roberson
Walter Roberson 2021-1-7
The return value from predict is labels in the same format as they were input to ficsvm. Your two labels are {'1', '2'} so you get a cell array of labels returned.
Consider changing the {'1', '2'} to be {'Malignant', 'Benign'} and then you would not have to do the if .
Warid Islam
Warid Islam 2021-1-8
Hi Walter,
Your suggestions worked big time. Thank you.
Best Regards
Warid Islam

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Matrix Indexing 的更多信息

产品


版本

R2019a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by