confusion on a new schema for solving ode

1 次查看(过去 30 天)
Hello all, recently i've been working on an algorithm for solving ode, called QSS family, which was found by Prof.Ernesto Kofman. I want to run the algorithm on matlab code, but i'm not sure if the code is right. Can anyone help me to tell if it's right?
The code below is an example to solve the ode:, with and all equal 0 at .
clc
clear
tic
delta_q=1e-4;
q1=0;q2=0;
x1=0;x2=0;
t=0;delta_t=0;tfinal=20;
A=zeros(0,3);
n=0;
while (t<tfinal)
Dx1=q2;
Dx2=1-3*q1-4*q2;
if (Dx1>0)
delta_x1=delta_q+q1-x1;
else
delta_x1=delta_q-q1+x1;
end
if (Dx2>0)
delta_x2=delta_q+q2-x2;
else
delta_x2=delta_q-q2+x2;
end
delta_t1=delta_x1/abs(Dx1);
delta_t2=delta_x2/abs(Dx2);
if (delta_t1<delta_t2)
delta_t=delta_t1;
t=t+delta_t;
x1=x1+Dx1*delta_t;
x2=x2+Dx2*delta_t;
q1=x1;
else
delta_t=delta_t2;
t=t+delta_t;
x1=x1+Dx1*delta_t;
x2=x2+Dx2*delta_t;
q2=x2;
end
n=n+1;
A(n,1)=t;
A(n,2)=x1;
A(n,3)=x2;
% A(n,4)=q1;
% A(n,5)=q2;
end
A;
figure(1)
plot(A(:,1),A(:,2),A(:,1),A(:,3));
toc

采纳的回答

Bobby Fischer
Bobby Fischer 2021-1-15
Hello,
function euler1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clc
clear
tic
delta_q=1e-4;
q1=0;q2=0;
x1=0;x2=0;
t=0;delta_t=0;tfinal=20;
A=zeros(0,3);
n=0;
while (t<tfinal)
Dx1=q2;
Dx2=1-3*q1-4*q2;
if (Dx1>0)
delta_x1=delta_q+q1-x1;
else
delta_x1=delta_q-q1+x1;
end
if (Dx2>0)
delta_x2=delta_q+q2-x2;
else
delta_x2=delta_q-q2+x2;
end
delta_t1=delta_x1/abs(Dx1);
delta_t2=delta_x2/abs(Dx2);
if (delta_t1<delta_t2)
delta_t=delta_t1;
t=t+delta_t;
x1=x1+Dx1*delta_t;
x2=x2+Dx2*delta_t;
q1=x1;
else
delta_t=delta_t2;
t=t+delta_t;
x1=x1+Dx1*delta_t;
x2=x2+Dx2*delta_t;
q2=x2;
end
n=n+1;
A(n,1)=t;
A(n,2)=x1;
A(n,3)=x2;
% A(n,4)=q1;
% A(n,5)=q2;
end
figure(1)
close(1)
figure(1)
subplot(1,3,1)
hold on
axis([0,20 -0.05 0.35])
plot(A(:,1),A(:,2),'b')
plot(A(:,1),A(:,3),'r');
grid on
title('HS')
toc
whos
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
t=linspace(0,20,501);
x0=[0 0];
whos
[t,x]=ode45(@fun,t,x0);
whos
subplot(1,3,2)
hold on
axis([0,20 -0.05 0.35])
plot(t,x(:,1),'k')
plot(t,x(:,2),'k')
grid on
title('edo45')
subplot(1,3,3)
hold on
axis([0,20 -0.05 0.35])
plot(A(:,1),A(:,2),'b')
plot(A(:,1),A(:,3),'r');
plot(t,x(:,1),'k.')
plot(t,x(:,2),'k.')
grid on
title('HS, edo45')
function [dxdt]=fun(~,x)
x1p=x(2);
x2p=1-3*x(1)-4*x(2);
dxdt=[x1p; x2p];
end
end
  1 个评论
汉武 沈
汉武 沈 2021-1-15
Thank you guy! In fact, my original intention was to let others to help me code the algorithm more effeciently, then i felt the code is okay for now. Thank you again anyway!
One more thing, I have upated another question about ode, hope you can help me!

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by