built-in 2D convolution vs for-loop convolution differences?

4 次查看(过去 30 天)
Can someone tell me what's up with the following code? Why do I get different results implementing my own convolution w/ for loops vs the conv2 function?
x = 0:.1:pi;
A = rand(100,100);
M = sin(x).^2'*sin(x).^2;
figure(1);
subplot(3,2,1);imagesc(x,x,M);colorbar('vert');title('Convolution kernel');
subplot(3,2,2);imagesc(A);colorbar('vert');title('Data matrix');
res = conv2(A,M,'valid');
subplot(3,2,3);imagesc(res);colorbar('vert');title('conv2(A,M)');
res2 = zeros(size(res));
for ii = 1:size(A,1)-size(M,1)+1
for jj = 1:size(A,2)-size(M,2)+1
res2(ii,jj) = sum(sum(M.*A(ii:ii+size(M,1)-1,jj:jj+size(M,2)-1)));
end
end
subplot(3,2,4);imagesc(res2);colorbar('vert');title('for loop conv2(A,M)');
subplot(3,2,5);imagesc(res-res2);colorbar('vert');title('difference');
subplot(3,2,6);imagesc(100*(res-res2)./res);colorbar('vert');title('% error');

采纳的回答

Iman Ansari
Iman Ansari 2013-5-8
Hi. You need to rotate your kernel 180 degree:
x = 0:.1:pi;
A = rand(100,100);
M = sin(x).^2'*sin(x).^2;
figure(1);
subplot(3,2,1);imagesc(x,x,M);colorbar('vert');title('Convolution kernel');
subplot(3,2,2);imagesc(A);colorbar('vert');title('Data matrix');
res = conv2(A,M,'valid');
subplot(3,2,3);imagesc(res);colorbar('vert');title('conv2(A,M)');
res2 = zeros(size(res));
M=rot90(M,2);
for ii = 1:size(A,1)-size(M,1)+1
for jj = 1:size(A,2)-size(M,2)+1
res2(ii,jj) = sum(sum(M.*A(ii:ii+size(M,1)-1,jj:jj+size(M,2)-1)));
end
end
subplot(3,2,4);imagesc(res2);colorbar('vert');title('for loop conv2(A,M)');
subplot(3,2,5);imagesc(res-res2);colorbar('vert');title('difference');
subplot(3,2,6);imagesc(100*(res-res2)./res);colorbar('vert');title('% error');

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Creating and Concatenating Matrices 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by