Problem with using convolutional Autoencoder

3 次查看(过去 30 天)
Hi,
I am using convolutional autoencoder to reconstruct fingerprint images how ever i am recieveing error
This is the code i am using
close all;
clc;
%% Initalize the data
dataDir= fullfile('Data/');
exts = {'.jpg','.png','.tif','BMP'};
imds = imageDatastore(fullfile(dataDir),...
'IncludeSubfolders',true,'FileExtensions','.jpg','LabelSource','foldernames');
countEachLabel(imds);
[TrainData, TestData] = splitEachLabel(imds, 0.5);
size(TrainData);
countEachLabel(TrainData);
numImages = numel(TrainData.Files);
for i = 1:numImages
img = readimage(TrainData, i);
img=rgb2gray(img);
img3= im2double(img);
scale = 0.5;
img8 = imresize(img3,scale);
img4= imshow(img8, 'InitialMagnification',800);
drawnow;
Train{i} = (img8); %#ok<SAGROW>
end
layers = [
imageInputLayer([28 28 3],"Name","imageinput","Normalization","none")
convolution2dLayer([3 3],64,"Name","conv_1","Padding","same")
leakyReluLayer(0.01,"Name","leakyrelu_1")
convolution2dLayer([3 3],128,"Name","conv_2","Padding","same")
leakyReluLayer(0.01,"Name","leakyrelu_3")
convolution2dLayer([3 3],128,"Name","conv_3","Padding","same")
leakyReluLayer(0.01,"Name","leakyrelu_4")
convolution2dLayer([3 3],64,"Name","conv_4","Padding","same")
batchNormalizationLayer("Name","batchnorm")
reluLayer("Name","relu1")
dropoutLayer(0.5,"Name","drop")
convolution2dLayer([3 3],1,"Name","conv_5","Padding","same")
leakyReluLayer(0.01,"Name","leakyrelu_5")
regressionLayer("Name","regressionoutput")];
autoenc = trainAutoencoder(Train,layers,'MaxEpochs',400,...
'DecoderTransferFunction','purelin','EncoderTransferFunction','satlin','L2WeightRegularization',0.004,'SparsityRegularization',4,'SparsityProportion',0.15);
numImages = numel(TestData.Files);
for i = 1:numImages
img5 = readimage(TestData, i);
img5=rgb2gray(img5);
img6= im2double(img5);
scale = 0.5;
img9 = imresize(img6,scale);
img7= imshow(img9, 'InitialMagnification', 800);
drawnow;
Test{i} = (img9); %#ok<SAGROW>
end
xReconstructed = predict(autoenc,Test);
%% Test Images
figure();
for i = 1:16
subplot(4,5,i);
imshow(TestData.Files{i});
end
%% Reconstructed images from TestData
figure();
for i = 1:16
subplot(4,5,i);
reconstructed = xReconstructed{i};
reconstructed(imbinarize(reconstructed)) = 1;
imshow(reconstructed)
end
This is the error
Error using Autoencoder.parseInputArguments (line 485)
'HiddenSize' must be an integer greater than 0.
Error in trainAutoencoder (line 107)
paramsStruct = Autoencoder.parseInputArguments(varargin{:});
Error in data_process1 (line 45)
autoenc = trainAutoencoder(Train,layers,'MaxEpochs',400,...
Kindly looking for your su[port
Best

回答(1 个)

Madhav Thakker
Madhav Thakker 2021-3-15
Hi Abdussalam,
The trainAutoencoder function expects the second argument as hiddenSize and not layers and create a sparse autoencoder.
I understand you want to create a convolutional auto-encoder. You can do so by using trainNetwork function and using layers to train a convolutional auto-encoder.
Hope this helps.

类别

Help CenterFile Exchange 中查找有关 Image Data Workflows 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by