When using ODE45, can I specify a variable to assume two different values during the timespan?

4 次查看(过去 30 天)
I have tried in different ways to see what happens to voltage V and gating conductances m, n and h when, at time step x, current I switched from 0 to 0.1, and then at time step x + n it gets back to 0. However, it looks like regardless of what I do, ODE45 still assumes I is either 0 or 0.1 for the whole time span.
This is the function. In this case the current I is 0.1 for the whole time span. Is there a way to make it 0 everywhere except for 10 ms in the middle, for example?
function ODE_Hodgkin_Huxley (varargin)
t=0:0.1:25; %Time Array ms
V=-60; % Initial Membrane voltage
m=alpham(V)/(alpham(V)+betam(V)); % Initial m-value
n=alphan(V)/(alphan(V)+betan(V)); % Initial n-value
h=alphah(V)/(alphah(V)+betah(V)); % Initial h-value
y0=[V;n;m;h];
tspan = [0,max(t)];
%Matlab's ode45 function
[time,V] = ode45(@ODEMAT,tspan,y0);
OD=V(:,1);
ODn=V(:,2);
ODm=V(:,3);
ODh=V(:,4);
[r,c] = size(time);
I = ones (r,c) ./ 10; %Current
figure
subplot(3,1,1)
plot(time,OD);
legend('ODE45 solver');
xlabel('Time (ms)');
ylabel('Voltage (mV)');
title('Voltage Change for Hodgkin-Huxley Model');
subplot(3,1,2)
plot(time,I);
legend('Current injected')
xlabel('Time (ms)')
ylabel('Ampere')
title('Current')
subplot(3,1,3)
plot(time,[ODn,ODm,ODh]);
legend('ODn','ODm','ODh');
xlabel('Time (ms)')
ylabel('Value')
title('Gating variables'
end
function [dydt] = ODEMAT(t,y)
%Constants
ENa=55; % mv Na reversal potential
EK=-72; % mv K reversal potential
El=-49; % mv Leakage reversal potential
%Values of conductances
gbarl=0.003; % mS/cm^2 Leakage conductance
gbarNa=1.2; % mS/cm^2 Na conductance
gbarK=0.36; % mS/cm^2 K conductancence
I = 0.1; %Applied constant
Cm = 0.01; % Capacitance
% Values set to equal input values
V = y(1);
n = y(2);
m = y(3);
h = y(4);
gNa = gbarNa*m^3*h;
gK = gbarK*n^4;
gL = gbarl;
INa=gNa*(V-ENa);
IK=gK*(V-EK);
Il=gL*(V-El);
dydt = [((1/Cm)*(I-(INa+IK+Il))); % Normal case
alphan(V)*(1-n)-betan(V)*n;
alpham(V)*(1-m)-betam(V)*m;
alphah(V)*(1-h)-betah(V)*h];
end
I attach the other functions here.
Thank you!

采纳的回答

Steven Lord
Steven Lord 2021-3-7
Solve the system with V = 0 up until the time when it should change. If you're not sure of the exact time when it should change, use an events function to determine when it should change. See the ballode example for how to use events functions with the ODE solvers.
Use the final result from the first call to the ODE solver to generate initial conditions for the second call to the ODE solver, which solves the ODE with V = 0.1 over the interval when it has that value.
Use the final result from the second call to the ODE solver to generate initial conditions for the third call to the ODE solver, which solves the ODE with V = 0 over the remaining interval.
  1 个评论
Samuele Bolotta
Samuele Bolotta 2021-3-9
编辑:Samuele Bolotta 2021-3-9
Thank you!
What are the advantages of using this approach rather than the "ODE with Time-Dependent Terms" example that is mentioned in the ode45 documentation?
Best,
Samuele

请先登录,再进行评论。

更多回答(1 个)

Jan
Jan 2021-3-7
ODE45 is designe to integrate smooth functions only. To change a parameter you have to integrate in chunks:
tSwitch1 = 10.0
tSwtich2 = 10.1;
t0 = 0;
...
I = 0.1;
[time1, V1] = ode45(@(t,y), @ODEMAT(t, y, I), [t0, tSwitch1], y0);
I = 0.0;
y0 = V1(end, :);
[time2, V2] = ode45(@(t,y), @ODEMAT(t, y, I), [tSwitch1, tSwitch2], y0);
I = 0.1;
y0 = V2(end, :);
[time3, V3] = ode45(@(t,y), @ODEMAT(t, y, I), [tSwitch1, tEnd], y0);
time = cat(1, time1, time2, time3);
V = cat(1, V1, V2, V3);
...
function [dydt] = ODEMAT(t, y, I)
% Omit the definition of I inside this function.
...
end

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by