How to find State Transition Matrix in terms of sin and cos if eigenvalues are Complex Conjugate?

19 次查看(过去 30 天)
Hello,
I am trying to find State Transition Matrix (STM) in MATLAB using "expm(A*t)" command. For real roots, its fine, but when its complex eigenvalues, its going into piecewise mode and not giving the STM in terms of sin or cosine.
A = [0 1 0; 0 0 1; -2 -3 -5];
syms t;
A_STM = expm(A*t)
For this I am getting following STM in truncated form as attached (One Real and Two Complex Conjugate):
But I want answer in the following form (Not for above example), from MATLAB -
Can somebody guide, help?
Thank you.

采纳的回答

Star Strider
Star Strider 2021-3-23
Use the rewrite function, then simplify:
A = [0 1; -2 -2];
syms t;
A_STM = expm(A*t)
A_STM = rewrite(A_STM, 'sincos')
A_STM = simplify(A_STM, 500)
producing:
A_STM =
[2^(1/2)*exp(-t)*sin(t + pi/4), exp(-t)*sin(t)]
[ -2*exp(-t)*sin(t), 2^(1/2)*exp(-t)*cos(t + pi/4)]
in LaTeX:
.
  6 个评论

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 MATLAB 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by