implementation of mini-batch stochastic gradient descent

6 次查看(过去 30 天)
I implemented a mini-batch stochastic gradien descent but counldn't find the bug in my code.
I used this implement to do a classification problem but all my final predictions are 0.
W2 = -1+2*rand(5,2); W3 = -1+2*rand(5,5);
W4 = -1+2*rand(5,5); W5 = -1+2*rand(1,5);
b2 = -1+2*rand(5,1); b3 = -1+2*rand(5,1);
b4 = -1+2*rand(5,1); b5 = -1+2*rand(1,1);
eta = 5e-3; % learning rate
iter = 1000; % number of iterations
num_data = length(label);
loss_vec = zeros(1,iter);
tloss_vec = zeros(1,iter);
for it = 1:iter
% mini-batch method
batch_size = 50;
rand_idx = randperm(num_data);
rand_idx = reshape(rand_idx,[],num_data/batch_size);
for idx = rand_idx
% forward pass
a2 = activate([x1(:,idx);x2(:,idx)], W2, b2);
a3 = activate(a2,W3,b3);
a4 = activate(a3,W4,b4);
a5 = activate(a4,W5,b5);
% backward pass (gradient)
delta5 = a5.*(1-a5).*(a5-label(idx));
delta4 = a4.*(1-a4).*(W5'*delta5);
delta3 = a3.*(1-a3).*(W4'*delta4);
delta2 = a2.*(1-a2).*(W3'*delta3);
% update weights and bias
W2 = W2 - 1/length(idx)*eta*delta2*[x1(:,idx);x2(:,idx)]';
W3 = W3 - 1/length(idx)*eta*delta3*a2';
W4 = W4 - 1/length(idx)*eta*delta4*a3';
W5 = W5 - 1/length(idx)*eta*delta5*a4';
b2 = b2 - 1/length(idx)*eta*sum(delta2,2);
b3 = b3 - 1/length(idx)*eta*sum(delta3,2);
b4 = b4 - 1/length(idx)*eta*sum(delta4,2);
b5 = b5 - 1/length(idx)*eta*sum(delta5,2);
% compute train loss and test loss
loss_vec(it) = 1/(2*num_data)*LossFunc(W2,W3,W4,W5,b2,b3,b4,b5,[x1;x2],label);
tloss_vec(it) = 1/(2*200)*LossFunc(W2,W3,W4,W5,b2,b3,b4,b5,[tx1;tx2],tlabel);
end
end
%% cost function
function loss = LossFunc(W2,W3,W4,W5,b2,b3,b4,b5,x,y)
a2 = activate(x, W2, b2);
a3 = activate(a2, W3, b3);
a4 = activate(a3, W4, b4);
a5 = activate(a4, W5, b5);
loss = norm(a5-y,2)^2;
end
%% prediction
function pred = predict(W2,W3,W4,W5,b2,b3,b4,b5,x)
a2 = activate(x, W2, b2);
a3 = activate(a2, W3, b3);
a4 = activate(a3, W4, b4);
a5 = activate(a4, W5, b5);
pred = round(a5);
end
%% activation function
function y = activate(x,W,b)
y = 1./(1+exp(-(W*x+b)));
end

回答(2 个)

Mahesh Taparia
Mahesh Taparia 2021-4-2
Hi
You mentioned that you are implementing a classification network. In your code, you are using square of L2 norm to calculate the loss and loss derivative is also not correct while doing back propagation. Moreover, since it is a classification network, use the classification loss like cross entropy loss, focalcrossentropy, etc instead of norm. May be this is the reason you are getting 0 everytime.
Also, you can use MATLAB inbuilt function to perform back propagation. For this, you can refer the link given below:
Hope it will help!
  1 个评论
konoha
konoha 2021-4-2
编辑:konoha 2021-4-2
the derivative of mes is -(y-f(x))f'(x). I don't follow your suggestions.
Thank you.

请先登录,再进行评论。


Mohamed Salem
Mohamed Salem 2022-12-22
Write a MATLAB code, that implement Dalta learning rule with mini-batch.
Compare (with graph) your mini-batch algorithm with SGD, Batch algorithm in terms of mean square error.

类别

Help CenterFile Exchange 中查找有关 Deep Learning Toolbox 的更多信息

产品


版本

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by