Saved agent always gives constant output no matter how or how much I train it

9 次查看(过去 30 天)
I trained a DDPG RL Agent in Simulink environment. The training looked fine to me and I saved agents in the process.
I trained the RL agent using different networks and the saved agents always gives a const output (namely, the LowerLimit of action)
Please help me. I have been looking for help from the past week.
INPUTMAX = 1E-4;
actionInfo = rlNumericSpec([2 1],'LowerLimit',-INPUTMAX,'UpperLimit', INPUTMAX);
actionInfo.Name = 'Inlet flow rate change';
observationInfo = rlNumericSpec([5 1],'LowerLimit',[300;300;1.64e5;0;0],'UpperLimit',[393;373;6e5;0.01;0.01]);
observationInfo.Name = 'Temperatures, Pressure and flow rates';
env = rlSimulinkEnv(mdl,[mdl '/RL Agent'],observationInfo,actionInfo);
L = 25; % number of neurons
%% CRITIC NETWORK
statePath = [
featureInputLayer(5,'Normalization','none','Name','observation')
fullyConnectedLayer(L,'Name','fc1')
reluLayer('Name','relu1')
concatenationLayer(1,2,"Name",'concat')
fullyConnectedLayer(29,'Name', 'fc2')
reluLayer("Name",'relu3')
fullyConnectedLayer(29,'Name', 'fc3')
reluLayer('Name','relu2')
fullyConnectedLayer(1,'Name','fc4')
];
actionPath = [
featureInputLayer(2,'Normalization','none','Name','action')
fullyConnectedLayer(4,'Name','fcaction')
reluLayer("Name",'actionrelu')
];
criticNetwork = layerGraph(statePath);
criticNetwork = addLayers(criticNetwork, actionPath);
criticNetwork = connectLayers(criticNetwork,'actionrelu','concat/in2');
criticOptions = rlRepresentationOptions('LearnRate',1e-3,'GradientThreshold',1,'L2RegularizationFactor',1e-4,"UseDevice","gpu");
critic = rlQValueRepresentation(criticNetwork,observationInfo,actionInfo,...
'Observation',{'observation'},'Action',{'action'},criticOptions);
% plot(criticNetwork)
%% ACTOR NETWORK
actorNetwork = [
featureInputLayer(5,'Normalization','none','Name','observation')
fullyConnectedLayer(L,'Name','fc1')
sigmoidLayer('Name','sig1')
fullyConnectedLayer(L,'Name','fc4')
reluLayer('Name','relu4')
fullyConnectedLayer(2,'Name','fc5')
tanhLayer('Name','tanh1')
scalingLayer("Name","scale","Scale",INPUTMAX*ones(2,1))
];
actorNetwork = layerGraph(actorNetwork);
% plot(actorNetwork)
actorOptions = rlRepresentationOptions('LearnRate',1e-4,'GradientThreshold',1,'L2RegularizationFactor',1e-5,"UseDevice","gpu");
actor = rlDeterministicActorRepresentation(actorNetwork,observationInfo,actionInfo,...
'Observation',{'observation'},'Action',{'scale'},actorOptions);
agentOptions = rlDDPGAgentOptions(...
'TargetSmoothFactor',1e-3,...
'ExperienceBufferLength',1e4,...
'SampleTime',1,...
'DiscountFactor',0.99,...
'MiniBatchSize',64,...
"NumStepsToLookAhead",1,...
"SaveExperienceBufferWithAgent",true, ...
"ResetExperienceBufferBeforeTraining",false);
agentOptions.NoiseOptions.Variance = 0.4;
agentOptions.NoiseOptions.VarianceDecayRate = 1e-5;
agent = rlDDPGAgent(actor,critic,agentOptions);
maxepisodes = 1000;
maxsteps = 500;
trainingOpts = rlTrainingOptions(...
'MaxEpisodes',maxepisodes,...
'MaxStepsPerEpisode',maxsteps,...
'Verbose',false,...
'Plots','training-progress',...
"ScoreAveragingWindowLength",50,...
"StopTrainingCriteria","AverageSteps",...
'StopTrainingValue',501,...
'SaveAgentCriteria',"EpisodeReward", ...
"SaveAgentValue",0);
trainingOpts.UseParallel = true;
trainingOpts.ParallelizationOptions.Mode = 'async';
trainingStats = train(agent,env,trainingOpts);

采纳的回答

Emmanouil Tzorakoleftherakis
The problem formulation is not correct. I suspect that even during training, you are seeing a lot of bang bang actions. The biggest issue is that the noise variance is pretty big compared to your action range. This needs to be fixed. Take a look at this note, "It is common to set StandardDeviation*sqrt(Ts) to a value between 1% and 10% of your action range"
  4 个评论
Emmanouil Tzorakoleftherakis
It decays over global episode steps - so it carries over from episode to episode. Reducing the decay rate would make the agent explore more over time, that may be something to try

请先登录,再进行评论。

更多回答(0 个)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by