gpuDevice command very slow

2 次查看(过去 30 天)
I am running CUDA kernels using the parallel computing toolbox and r2012a. Recently upgraded to a 600 series (Kepler) gpu. To setup the CUDA kernel we extract the maximum threads per block using: gpu_han=gpuDevice(1); k = parallel.gpu.CUDAKernel('gpu_tfm_linear_arb.ptx', gpu_tfm_linear_arb.cu'); k.ThreadBlockSize = gpu_han.MaxThreadsPerBlock;
This is now executing very slowly (order 2mins). If I specify the threadblocksize manually to the max of the card (1024 in this case), it executes in 0.1 s.
This used to run quickly with a 400 series card. Any help gratefully received

采纳的回答

James Lebak
James Lebak 2013-6-17
MATLAB R2012a doesn't include code for the Kepler series GPUs. This means that the very first time you call any GPU command after upgrading to a Kepler card, be it gpuDevice or something else, MATLAB will wait for the CUDA driver to just-in-time compile all the PTX code that ships with MATLAB for the Kepler device. This behavior allows MATLAB to work with cards that weren't available when that version of MATLAB was released.
The good news is that this should be a one-time hit. The next time you start MATLAB the JIT'd code should be cached and you should not get the performance hit.
The other thing to point out is that you should consider recompiling your CUDA kernel and producing PTX for the new card, if you haven't already done so, or you may see a similar one-time hit the first time you launch your own kernel for the same reason.

更多回答(2 个)

Andrei Pokrovsky
Andrei Pokrovsky 2016-9-15
编辑:Andrei Pokrovsky 2016-9-15
Try setting these env vars:
export CUDA_CACHE_MAXSIZE=2147483647
export CUDA_CACHE_DISABLE=0
This cured the problem on my GTX1080.
https://devblogs.nvidia.com/parallelforall/cuda-pro-tip-understand-fat-binaries-jit-caching/

Anthony
Anthony 2013-6-17
Thanks that is helpful. I don't have write access to the program data directory, is there a way to alter where the cache of this data is stored?
  2 个评论
Edric Ellis
Edric Ellis 2013-6-18
The cache is not stored where the program lives, this page from NVIDIA has all the gory details, including this:
  • on Windows, %APPDATA%\NVIDIA\ComputeCache,
  • on MacOS, $HOME/Library/Application\ Support/NVIDIA/ComputeCache,
  • on Linux, ~/.nv/ComputeCache
Anthony
Anthony 2013-7-12
Thanks a lot, don't know how I missed that. Problem fixed.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 GPU Computing 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by