How can I convert x, y, and z which are functions of theta to theta function of x, y, and z?

4 次查看(过去 30 天)
Hello,
I have three equations,
eqn1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2 == 0
eqn2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2 == 0
eqn3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2 == 0
Every value except theta1,theta2, and theta3 are given.
I want to make the three equations as theta functions having x, y, and z variables.
Like a form of theta1 = .... , theta2 = ....., and theta3 = ....
Please let me know what command I can use to make the conversion.

采纳的回答

DGM
DGM 2021-4-6
编辑:DGM 2021-4-6
Something like this
syms theta1 theta2 theta3 x y z L l c b a
eqn1 = 2*L*(y+a)*cos(theta1) + 2*z*L*sin(theta1) + x^2 + y^2 + z^2 + a^2 + L^2 + 2*y*a - l^2 == 0
eqn2 = -L*(sqrt(3)*(x+b)+y+c)*cos(theta2) + 2*z*L*sin(theta2) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 + 2*x*b + 2*y*c - l^2 == 0
eqn3 = L*(sqrt(3)*(x-b)-y-c)*cos(theta3) + 2*z*L*sin(theta3) + x^2 + y^2 + z^2 + b^2 + c^2 + L^2 - 2*x*b + 2*y*c - l^2 == 0
e1 = theta1==solve(eqn1,theta1)
e2 = theta2==solve(eqn2,theta2)
e3 = theta3==solve(eqn3,theta3)
  3 个评论

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Mathematics 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by