MSE Mean Square Error
57 次查看(过去 30 天)
显示 更早的评论
I De-noise some images and I want to evaluate them so I calculate SNR but I want to use another like Mean Square Error (MSE) I saw some people use it but I don't know what is express in my case I have a noisy image like input and De-noised one in the out put Or maybe PSNR please help me
0 个评论
采纳的回答
Image Analyst
2013-7-3
See my demo:
% Demo to calculate PSNR of a gray scale image.
% http://en.wikipedia.org/wiki/PSNR
% Clean up.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clear; % Erase all existing variables. Or clearvars if you want.
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 20;
%------ GET DEMO IMAGES ----------------------------------------------------------
% Read in a standard MATLAB gray scale demo image.
grayImage = imread('cameraman.tif');
[rows columns] = size(grayImage);
% Display the first image.
subplot(2, 2, 1);
imshow(grayImage, []);
title('Original Gray Scale Image', 'FontSize', fontSize);
set(gcf, 'Position', get(0,'Screensize')); % Maximize figure.
% Get a second image by adding noise to the first image.
noisyImage = imnoise(grayImage, 'gaussian', 0, 0.003);
% Display the second image.
subplot(2, 2, 2);
imshow(noisyImage, []);
title('Noisy Image', 'FontSize', fontSize);
%------ PSNR CALCULATION ----------------------------------------------------------
% Now we have our two images and we can calculate the PSNR.
% First, calculate the "square error" image.
% Make sure they're cast to floating point so that we can get negative differences.
% Otherwise two uint8's that should subtract to give a negative number
% would get clipped to zero and not be negative.
squaredErrorImage = (double(grayImage) - double(noisyImage)) .^ 2;
% Display the squared error image.
subplot(2, 2, 3);
imshow(squaredErrorImage, []);
title('Squared Error Image', 'FontSize', fontSize);
% Sum the Squared Image and divide by the number of elements
% to get the Mean Squared Error. It will be a scalar (a single number).
mse = sum(sum(squaredErrorImage)) / (rows * columns);
% Calculate PSNR (Peak Signal to Noise Ratio) from the MSE according to the formula.
PSNR = 10 * log10( 256^2 / mse);
% Alert user of the answer.
message = sprintf('The mean square error is %.2f.\nThe PSNR = %.2f', mse, PSNR);
msgbox(message);
9 个评论
DGM
2023-2-12
编辑:DGM
2023-2-12
From the imnoise() synopsis:
J = imnoise(I,'salt & pepper',D) adds "salt and pepper" noise to the
image I, where D is the noise density. This affects approximately
D*numel(I) pixels. The default for D is 0.05.
So D can obviously be anything from 0 to 1. Values outside that range will result in an error message.
Also from the synopsis:
The mean and variance parameters for 'gaussian', 'localvar', and
'speckle' noise types are always specified as if for a double image
in the range [0, 1].
So M can be anything real, and V can be anything real and positive. Given the fact that we're working in unit-scale though, it wouldn't make sense for V to be very large or for the magnitude of M to be far from zero.
更多回答(2 个)
ashkan abbasi
2014-4-11
% MSE & PSNR for a grayscale image (cameraman.tif) & its filtered
% version
clear
clc
im=imread('cameraman.tif');
im=im2double(im);
h1=1/9*ones(3,3);
imf1=imfilter(im,h1,'replicate');
h2=1/25*ones(5,5);
imf2=imfilter(im,h2,'replicate');
%
MSE1=mean(mean((im-imf1).^2));
MSE2=mean(mean((im-imf2).^2));
MaxI=1;% the maximum possible pixel value of the images.
PSNR1=10*log10((MaxI^2)/MSE1);
PSNR2=10*log10((MaxI^2)/MSE2);
3 个评论
Image Analyst
2015-6-10
The M in MSE means "Mean". He should use immse() and psnr(), the built in functions, though, if he has a recent enough version of MATLAB.
Desmond Michael
2016-2-10
编辑:Rik
2022-2-2
Hello everyone, I've found a website regarding the above and its very helpful. http://vaaiibhav.me/calculating-the-psnr-and-mse-code-matlab/
6 个评论
Image Analyst
2019-3-27
You have to decide what you want when you think of PSNR for a color image. Maybe you want the average PSNR of each color channel.
DGM
2023-2-12
Note that if you have a version newer than R2014x and you don't have psnr() or immse(), bear in mind that both are still part of the Image Processing Toolbox, so you'll also need that.
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!