Retime data aggregation for ID
1 次查看(过去 30 天)
显示 更早的评论
Hello everyone,
I'm going to calculate the monthly average of daily temperatures grouping by sensor using retime function. At the moment I'm trying to select each sensor with a loop and then apply the retime function, but I have to calculate six million rows so I would like to avoid a loop to speed up the calculation
I give an example:
Time = datetime({'18-feb-2021';'19-feb-2021';...
'01-mar-2021';'04-mar-2021';'18-feb-2021';...
'19-feb-2021';'01-mar-2021';'04-mar-2021'});
Temp = [56.82;62.72;64.52;63.81;63.45;59.7;60.27;61.32];
Sensor = [12;12;12;12;13;13;13;13];
TT = timetable(Time,Sensor,Temp);
Current code:
uni_sensor = unique(Sensor);
monthly_ds = timetable;
parfor kk = 1:length(uni_sensor)
index_retime = find(TT.Sensor == uni_sensor(kk));
sensor_retime = TT(index_retime,:);
monthly_data = retime(sensor_retime(:,2), 'monthly', 'mean');
data_sensor_retime = array2table(repmat(uni_sensor(kk), size(monthly_data, 1),1), 'VariableNames', "Sensor" );
monthly_sub_id = [monthly_data, data_sensor_retime];
monthly_ds = [monthly_ds; monthly_sub_id];
end
Desired output:
Time = datetime({'feb-2021';'feb-2021';...
'mar-2021';'mar-2021'});
Temp = [59.77;61.575;64.165;60.795];
Sensor = [12;12;13;13];
TT_out = timetable(Time,Sensor,Temp);
Thanks in advance,
Gianluca
0 个评论
采纳的回答
Marco Riani
2021-4-27
I think in this example it is unnecessary to use retime.
I would proceed as follows.
Time1=char(Time);
Time2=Time1(:,4:end);
TT = table(findgroups(string(Time2)),Sensor,Temp);
groupvars={'Sensor' 'Var1'};
datavars='Temp';
groupsummary(TT,groupvars,'mean',datavars)
Instead of using groupsummary it is possible to use grpstats. Please let us know which between groupsummary and grpstats is faster.
更多回答(1 个)
Eric Sofen
2021-5-4
Another approach is to unstack the timetable based on the sensor ID, so you'd have a wide timetable with separate variables temp_12, temp_13, ..., then apply retime to that without a need for grouping. I don't know if it would be faster than Marco's findgroups approach (which is quite clever), and having the sensor IDs embedded in the table variable names may or may not be useful in the long run, but it's yet another way to tackle this problem.
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Data Type Identification 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!