i have a problem with augmentedimagedatastore how can i solve it?
13 次查看(过去 30 天)
显示 更早的评论
matlabroot = 'C:\Users\user a\Desktop\Hind\Image C\data101';
DatasetPath = fullfile(matlabroot);
Data = imageDatastore(DatasetPath,'IncludeSubfolders',true,'LabelSource','foldernames');
CountLabel = Data.countEachLabel;
auds = augmentedImageDatastore([224 224],Data);
trainData1 = auds;
[trainData] = auds;
netWidth = 16;
layers = [
imageInputLayer([224 224 3],'Name','input')
convolution2dLayer(3,netWidth,'Padding','same','Name','convInp')
batchNormalizationLayer('Name','BNInp')
reluLayer('Name','reluInp')
convolutionalUnit(netWidth,1,'S1U1')
additionLayer(2,'Name','add11')
reluLayer('Name','relu11')
convolutionalUnit(netWidth,1,'S1U2')
additionLayer(2,'Name','add12')
reluLayer('Name','relu12')
convolutionalUnit(2*netWidth,2,'S2U1')
additionLayer(2,'Name','add21')
reluLayer('Name','relu21')
convolutionalUnit(2*netWidth,1,'S2U2')
additionLayer(2,'Name','add22')
reluLayer('Name','relu22')
convolutionalUnit(4*netWidth,2,'S3U1')
additionLayer(2,'Name','add31')
reluLayer('Name','relu31')
convolutionalUnit(4*netWidth,1,'S3U2')
additionLayer(2,'Name','add32')
reluLayer('Name','relu32')
averagePooling2dLayer(8,'Name','globalPool')
fullyConnectedLayer(2,'Name','fcFinal')
softmaxLayer('Name','softmax')
classificationLayer('Name','classoutput')
];
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'reluInp','add11/in2');
lgraph = connectLayers(lgraph,'relu11','add12/in2');
skip1 = [
convolution2dLayer(1,2*netWidth,'Stride',2,'Name','skipConv1')
batchNormalizationLayer('Name','skipBN1')];
lgraph = addLayers(lgraph,skip1);
lgraph = connectLayers(lgraph,'relu12','skipConv1');
lgraph = connectLayers(lgraph,'skipBN1','add21/in2');
lgraph = connectLayers(lgraph,'relu21','add22/in2');
skip2 = [
convolution2dLayer(1,4*netWidth,'Stride',2,'Name','skipConv2')
batchNormalizationLayer('Name','skipBN2')];
lgraph = addLayers(lgraph,skip2);
lgraph = connectLayers(lgraph,'relu22','skipConv2');
lgraph = connectLayers(lgraph,'skipBN2','add31/in2');
lgraph = connectLayers(lgraph,'relu31','add32/in2');
options = trainingOptions('sgdm', 'MiniBatchSize',128,'MaxEpochs',10,'InitialLearnRate',1e-4,'ExecutionEnvironment','parallel');
[trainedNet1,traininfo] = trainNetwork(trainData,lgraph,options);
And i get this error:
Error in algo (line 105)
[trainedNet1,traininfo] = trainNetwork(trainData,lgraph,options);
Caused by:
Error using nnet.internal.cnn.DistributedDispatcher/computeInParallel (line 193)
Error detected on worker 2.
Error using augmentedImageDatastore/applyAugmentationPipeline (line 401)
augmentedImageDatastore cannot form MiniBatches of data because input image sizes differ in 3rd dimension. Consider
using 'ColorPreprocessing' option to ensure all augmented images have same number of channels.
0 个评论
回答(1 个)
Sanyam
2022-7-4
It looks like your data set contains images of different color channels like grayscale, rgb etc. matlab does not allow 2 images of different dimensions in a mini-batch. One of the ways would be to convert all your images in grayscale, this can be done by defining augmented datastore like this:
augmentedImageDatastore(inputSize(1:2),yourData,'ColorPreprocessing','rgb2gray');
It converts all the rgb images to grayscale.
Hope that helps! Thanks!
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Particle & Nuclear Physics 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!