How to Scale Gradient Field for large z-values?

4 次查看(过去 30 天)
I want to plot a function R^2 -> R with gradient Field beneath:
f2 = @(x,y) 1./sqrt(x.^2+y.^2);
[u2,v2] = meshgrid(-1:0.01:1);
[du2,dv2] = gradient(f2(u2,v2));
s = surf(u2,v2,f2(u2,v2));
hold on
contour(u2,v2,f2(u2,v2))
hold on
norm = 1./sqrt(du2.^2+dv2.^2);
quiver(u2,v2,du2./norm,dv2./norm,'LineWidth',2)
axis([-1 1 -1 1 0 10])
caxis([0,10])
colormap(cool)
alpha(s,0.95)
shading flat
Sadly the gradient field is not visible. Probably because it's too small, f2 get's too large and I'm lacking of the mathmatical knowledge to adjust it properly

采纳的回答

Anurag Ojha
Anurag Ojha 2024-5-8
Hello Niklas
One way to adjust it is by normalizing the gradient vectors before plotting them.
Here's an updated version of your code:
f2 = @(x,y) 1./sqrt(x.^2+y.^2);
[u2,v2] = meshgrid(-1:0.01:1);
[du2,dv2] = gradient(f2(u2,v2));
% Normalize the gradient vectors
norm = sqrt(du2.^2+dv2.^2);
du2_norm = du2./norm;
dv2_norm = dv2./norm;
s = surf(u2,v2,f2(u2,v2));
hold on
contour(u2,v2,f2(u2,v2))
hold on
quiver(u2,v2,du2_norm,dv2_norm,'LineWidth',2)
axis([-1 1 -1 1 0 10])
caxis([0,10])
colormap(cool)
alpha(s,0.95)
shading flat
This code normalizes the gradient vectors by dividing the du2 and dv2 components by their magnitude (norm). This ensures that the length of each vector is 1, making them visible in the plot.
  1 个评论
Niklas Kurz
Niklas Kurz 2024-5-12
Thanks for cleaning up open questions like this one that I have asked long ago x) Today I'd probably know better and woud have done it similar to you.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Surface and Mesh Plots 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by