Need the backward trajectories of ode plot

2 次查看(过去 30 天)
I have a system of differential equations which I can solve by Euler's method. The following code gives a plot of a trajectory that starts from x(1)=0.7; y(1)=0.11; and depicts its evolution in forwarding time. But I need a trajectory that starts from x(1)=0.7; y(1)=0.11; and evolved in backward time. That mean what will be the plot if t tends to -infinity. Please correct my code so that I can get backword evolution of trajectories:
clear
alpha=.5;gamma=1; delta=0.3; L=.4; beta=1.778;
x(1)=0.7;
y(1)=0.11;
t(1)=0;
for i=1:50000
t(i+1)=t(i)+.01;
x(i+1)=x(i)+.01*[x(i)*((1-x(i))*(x(i)/L-1)-beta*y(i)/(x(i)+alpha))];
y(i+1)=y(i)+.01*[beta*x(i)*y(i)/(x(i)+alpha)-gamma*y(i)-delta*y(i)^2];
end
plot(x,y, 'b')
axis([.4 1 0 .22])

回答(1 个)

Jan
Jan 2013-7-14
Do you ask for changing the line:
t(i+1) = t(i) + 0.01;
to
t(i+1) = t(i) - 0.01;
?
  4 个评论
Atom
Atom 2013-7-16
编辑:Atom 2013-7-16
Do you mean this?
alpha=.5;gamma=1; delta=0.3; L=.4; beta=1.778;
x(50000)=0.7;
y(50000)=0.11;
t(50000)=0;
for i=50000:1
t(i+1)=t(i)-.01;
x(i+1)=x(i)+.01*[x(i)*((1-x(i))*(x(i)/L-1)-beta*y(i)/(x(i)+alpha))];
y(i+1)=y(i)+.01*[beta*x(i)*y(i)/(x(i)+alpha)-gamma*y(i)-delta*y(i)^2];
end
plot(x,y, 'b')
axis([.4 1 0 .22])
But this does not servers the purpose. Please help me to solve the issue. I am very sorry for the inconvenience for the repeated request.
Jan
Jan 2013-7-16
编辑:Jan 2013-7-16
"for i=50000:1" does not enter the loop at all. You need the stepsize of -1.
I cannot test it currently, but let me guess:
for i = 50000:-1:2
t(i-1) = t(i) - 0.01;
x(i-1) = x(i) + 0.01*[x(i)*((1-x(i))*(x(i)/L-1)-beta*y(i)/(x(i)+alp ha))];
y(i-1) = y(i) + 0.01*[beta*x(i)*y(i)/(x(i)+alpha)-gamma*y(i)-delta*y(i)^2];
end

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Waveform Design and Signal Synthesis 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by