DAE Problem for implicit method. Discrete dynamic system.

10 次查看(过去 30 天)
%Parameters
Nest=100;
alfa = 1.2;
beta=0.75;
nu=alfa-1;
h = 0.9;
f = 0;
%Initial values
X=zeros(Nest,1);
Y=zeros(Nest,1);
X(1)=f;
Y(Nest)=h;
%Initial conditions to the DAE Method
init1=[X;Y];
tspan=[0 30];
rpar=[alfa,beta,nu,f,h,Nest];
M=[0 1 ;0 0];
options=odeset('Refine',5,'MassSingular','yes','Mass',M,'RelTol',1e-4,'AbsTol',1e-6);
[t,var]=ode15s(@diffX,tspan,init1,options,rpar);
function [vard]=diffX(t,var,rpar)
alfa=rpar(1);
beta=rpar(2);
nu=rpar(3);
f=rpar(4);
h=rpar(5);
Nest=rpar(6);
% var=reshape(var,[Nest,2]);
X=var(1:Nest);
Y=var(Nest+1:end);
for i=2:Nest-1
vard(i,1)=beta.*X(i-1)+Y(i+1)-beta.*X(i)-Y(i);
vard(i,2)=(alfa.*X(i))./(1+nu.*X(i-1));%Y(i+1)+nu.*X(i-1).*Y(i)-alfa.*X(i);
end
vard=reshape(vard,[2*(Nest-1),1]);
vard=[0;vard;Y(Nest)];
% vard=vard';
end

采纳的回答

Walter Roberson
Walter Roberson 2021-5-8
X=zeros(Nest,1);
Y=zeros(Nest,1);
init1=[X;Y];
So your initial conditions are 2*Nest x 1 and your function must return 2*Nest x 1.
For a mass matrix M then M*y_prime = f(x, y) and f must return 2*Nest x 1 and y_prime must be that size. In order to have M*y_prime be the same size as f(x, y) then M must be a square matrix with rows (and columns) the same size as the number of rows in y_prime. Which is 2*Nest
But does M have that size? No. M is 2x2 and so can only be used if Nest is 1.
  14 个评论
Walter Roberson
Walter Roberson 2021-5-10
PDE are often dealt with by dividing an area into discrete domains.
One of your recent questions mentions distillation columns. Physically those are continuous columns -- but subdividing into discrete parts to model behaviour through the column would be a common approach. It is also the most common approach to PDE.
Cesar García Echeverry
No, actually i solved. I used ode15s and ode15i. Defining M or the Jacobian matrix as {[],[eye(np-2) zeros(np-2); zeros(np-2) zeros(np-2)]} and the algebraic systemas as:
for i=2:n+1
res(i-1)=difXcol(i-1)-(sum(Am([1:np]+(i-1)*np).*Ycol)...
+beta*sum(An([1:np]+(i-1)*np).*Xcol(i))...
-beta*Xcol(i)-Ycol(i));
res(i-1+np-2)=Ycol(i)+nu.*Xcol(i).*Ycol(i)-alfa.*Xcol(i);
end
Plus the boundary conditions

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Ordinary Differential Equations 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by