Build model detection after features extraction
2 次查看(过去 30 天)
显示 更早的评论
Hello,
I'm trying to code a nose detection function from a IR video.
I extracted 2 frames from the video and foud the features and compared between them.
ref_img = imread('frame_1.png');
ref_img_gray=rgb2gray(ref_img);
ref_pts=detectSURFFeatures(ref_img_gray);
[ref_features,ref_validPts]=extractFeatures(ref_img_gray,ref_pts);
figure; imshow(ref_img);
hold on; plot(ref_pts.selectStrongest(50));
image=imread('frame_50.png');
I=rgb2gray(image);
I_pts=detectSURFFeatures(I);
[I_features,I_validPts]=extractFeatures(I,I_pts);
figure;imshow(image);
hold on; plot(I_pts.selectStrongest(50));
index_pairs=matchFeatures(ref_features,I_features);
ref_matched_pts=ref_validPts(index_pairs(:,1)).Location;
I_matched_pts=I_validPts(index_pairs(:,2)).Location;
close all
figure,showMatchedFeatures(image,ref_img,I_matched_pts,ref_matched_pts);
Here the figure obtained :
What I have to do as a next step ? We can see from the figure that we got the 2 nostrils as features, so how to train a model a got a function that tracks the region for all the frames ?
thank you
0 个评论
采纳的回答
Manas Meena
2021-5-13
After SURF feature detection you can select the strongest points of interest (eg. nostrils) and the use the vision.PointTracker function to track these selected points in the video.
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Computer Vision Toolbox 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!